Advertisements
Advertisements
प्रश्न
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
उत्तर
\[\text{ We have }, \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6 . . . . . \left( i \right)\]
\[\text{ As }, \left| x - 1 \right| = \binom{x - 1, x \geq 1}{1 - x, x < 1}; \]
\[\left| x - 2 \right| = \binom{x - 2, x \geq 2}{2 - x, x < 2}\text{ and }\]
\[\left| x - 3 \right| = \binom{x - 3, x \geq 3}{3 - x, x < 3}\]
\[\text{ Now }, \]
\[\text{ Case I: When } x < 1, \]
\[1 - x + 2 - x + 3 - x \geq 6\]
\[ \Rightarrow 6 - 3x \geq 6\]
\[ \Rightarrow 3x \leq 0\]
\[ \Rightarrow x \leq 0\]
\[\text{ So }, x \in ( - \infty , 0]\]
\[\text{ Case II: When } 1 \leq x < 2, \]
\[x - 1 + 2 - x + 3 - x \geq 6\]
\[ \Rightarrow 4 - x \geq 6\]
\[ \Rightarrow x \leq 4 - 6\]
\[ \Rightarrow x \leq - 2\]
\[\text{ So }, x \in \phi\]
\[\text{ Case III : When } 2 \leq x < 3, \]
\[x - 1 + x - 2 + 3 - x \geq 6\]
\[ \Rightarrow x \geq 6\]
\[\text{ So }, x \in \phi\]
\[\text{ Case IV : When } x \geq 3, \]
\[x - 1 + x - 2 + x - 3 \geq 6\]
\[ \Rightarrow 3x - 6 \geq 6\]
\[ \Rightarrow 3x \geq 12\]
\[ \Rightarrow x \geq \frac{12}{3}\]
\[ \Rightarrow x \geq 4\]
\[\text{ So }, x \in [4, \infty )\]
\[\text{ So, from all the four cases, we get }\]
\[x \in ( - \infty , 0] \cup [4, \infty )\]
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ Z
Solve: 4x − 2 < 8, when x ∈ Z
−(x − 3) + 4 < 5 − 2x
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{3}{x - 2} < 1\]
\[\frac{7x - 5}{8x + 3} > 4\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Mark the correct alternative in each of the following:
The inequality representing the following graph is
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If `1/(x - 2) < 0`, then x ______ 2.
If a < b and c < 0, then `a/c` ______ `b/c`.
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
Solve for x, the inequality given below.
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?
If |x − 1| > 5, then ______.
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If `2/(x + 2) > 0`, then x ______ –2.
If p > 0 and q < 0, then p – q ______ p.
If – 2x + 1 ≥ 9, then x ______ – 4.