हिंदी

Write the Solution Set of the Inequation X + 1 X ≥ 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 

उत्तर

\[\text{ We have }, \]
\[x + \frac{1}{x} \geq 2\]
\[ \Rightarrow \frac{x^2 + 1}{x} \geq 2\]
\[ \Rightarrow \frac{x^2 + 1}{x} - 2 \geq 0\]
\[ \Rightarrow \frac{x^2 - 2x + 1}{x} \geq 0\]
\[ \Rightarrow \frac{(x - 1 )^2}{x} \geq 0\]
\[ \Rightarrow \text{ Either } (x - 1 )^2 \geq 0 \text{ and } x > 0 or (x - 1 )^2 < 0 \text{ and } x < 0 . \]
\[\text{ But }, (x - 1 )^2 \text{ is always greater than zero } . \]
\[ \therefore (x - 1 )^2 \geq 0 \text{ and } x > 0\]
\[ \Rightarrow x > 0\]
\[ \Rightarrow x \in \left( 0, \infty \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.7 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.7 | Q 2 | पृष्ठ ३१

संबंधित प्रश्न

Solve: 12x < 50, when x ∈ N 


Solve: −4x > 30, when x ∈ N 


Solve: 4x − 2 < 8, when x ∈ N 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{5x + 8}{4 - x} < 2\]


\[\frac{x - 1}{x + 3} > 2\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve each of the following system of equations in R.

 10 ≤ −5 (x − 2) < 20 


Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve |3 – 4x| ≥ 9.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If |x − 1| ≤ 2, then –1 ______ x ______ 3


Solve for x, the inequality given below.

`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


If –3x + 17 < –13, then ______.


x and b are real numbers. If b > 0 and |x| > b, then ______.


If |x + 2| ≤ 9, then ______.


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If `2/(x + 2) > 0`, then x  ______ –2.


If x > – 5, then 4x ______ –20.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×