Advertisements
Advertisements
प्रश्न
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
उत्तर
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[ \Rightarrow \frac{10x + 3x}{4} \geq \frac{39}{4}\]
\[ \Rightarrow 10x + 3x \geq 39\]
\[ \Rightarrow 13x \geq 39\]
\[ \Rightarrow x \geq \frac{39}{13} (\text{ Dividing both the sides by } 13)\]
\[ \Rightarrow x \geq 3\]
\[\text{ Hence, the solution set of the given inequation is } [3, \infty ) .\]
APPEARS IN
संबंधित प्रश्न
3x − 7 > x + 1
3x + 9 ≥ −x + 19
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[x - 2 \leq \frac{5x + 8}{3}\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{5x - 6}{x + 6} < 1\]
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve the following system of equation in R.
\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\]
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve the following system of inequalities:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
If `|x - 2|/(x - 2) ≥ 0`, then ______.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there is 460 litres of the 9% solution, how many litres of 3% solution will have to be added?
If x is a real number and |x| < 3, then ______.
If x < –5 and x > 2, then x ∈ (– 5, 2)
If `2/(x + 2) > 0`, then x ______ –2.
If x > y and z < 0, then – xz ______ – yz.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.