हिंदी

5 X 2 + 3 X 4 ≥ 39 4 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]

उत्तर

\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[ \Rightarrow \frac{10x + 3x}{4} \geq \frac{39}{4}\]
\[ \Rightarrow 10x + 3x \geq 39\]
\[ \Rightarrow 13x \geq 39\]
\[ \Rightarrow x \geq \frac{39}{13} (\text{ Dividing both the sides by } 13)\]
\[ \Rightarrow x \geq 3\]
\[\text{ Hence, the solution set of the given inequation is } [3, \infty ) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.1 | Q 12 | पृष्ठ १०

संबंधित प्रश्न

3x − 7 > x + 1 


3x + 9 ≥ −x + 19 


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[x - 2 \leq \frac{5x + 8}{3}\] 


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{5x - 6}{x + 6} < 1\]


2x + 6 ≥ 0, 4x − 7 < 0 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve the following system of inequalities:

`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`


If `|x - 2|/(x - 2) ≥ 0`, then ______.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If |x − 1| ≤ 2, then –1 ______ x ______ 3


Solve for x, the inequality given below.

4x + 3 ≥ 2x + 17, 3x – 5 < –2


A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there is 460 litres of the 9% solution, how many litres of 3% solution will have to be added? 


If x is a real number and |x| < 3, then ______.


If x < –5 and x > 2, then x ∈ (– 5, 2)


If `2/(x + 2) > 0`, then x  ______ –2.


If x > y and z < 0, then – xz ______ – yz.


If |x + 2| > 5, then x ______ – 7 or x ______ 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×