Advertisements
Advertisements
प्रश्न
If x < –5 and x > 2, then x ∈ (– 5, 2)
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
If x < – 5 and x > 2, then x have no value.
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ Z
Solve: 4x − 2 < 8, when x ∈ R
x + 5 > 4x − 10
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{3}{x - 2} < 1\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve each of the following system of equations in R.
11 − 5x > −4, 4x + 13 ≤ −11
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Solve `(x - 2)/(x + 5) > 2`.
Solve 1 ≤ |x – 2| ≤ 3.
If a < b and c < 0, then `a/c` ______ `b/c`.
If p > 0 and q < 0, then p + q ______ p.
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
x and b are real numbers. If b > 0 and |x| > b, then ______.
If – 2x + 1 ≥ 9, then x ______ – 4.