Advertisements
Advertisements
प्रश्न
If x < –5 and x > 2, then x ∈ (– 5, 2)
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
If x < – 5 and x > 2, then x have no value.
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ N
Solve: 4x − 2 < 8, when x ∈ R
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{5x + 8}{4 - x} < 2\]
\[\frac{7x - 5}{8x + 3} > 4\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
Solve each of the following system of equations in R.
2 (x − 6) < 3x − 7, 11 − 2x < 6 − x
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
If |x + 3| ≥ 10, then ______.
If `1/(x - 2) < 0`, then x ______ 2.
If a < b and c < 0, then `a/c` ______ `b/c`.
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
x and b are real numbers. If b > 0 and |x| > b, then ______.
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If p > 0 and q < 0, then p – q ______ p.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.