हिंदी

Solve Each of the Following System of Equations in R. 11 − 5x > −4, 4x + 13 ≤ −11 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following system of equations in R.

11 − 5x > −4, 4x + 13 ≤ −11 

उत्तर

We have, 

\[11 - 5x > - 4\]

\[ \Rightarrow - 5x > - 4 - 11\]

\[ \Rightarrow - 5x > - 15\]

\[ \Rightarrow 5x < 15 \left[ \text{ Multiplying both sides by }- 1 \right]\]

\[ \Rightarrow x < \frac{15}{5} \]

\[ \Rightarrow x < 3\]

\[ \Rightarrow x \in ( - \infty , 3) . . . (i)\]

\[\text{ Also }, 4x + 13 \leq - 11\]

\[ \Rightarrow 4x \leq - 11 - 13\]

\[ \Rightarrow 4x \leq - 24\]

\[ \Rightarrow x \leq - 6\]

\[ \Rightarrow x \in ( - \infty , - 6] . . . (ii)\]

\[\text{ Hence, the solution of the given set of inequalities is the intersection of } (i) \text{ and } (ii) . \]

\[( - \infty 3) \cap ( - \infty , - 6] = ( - \infty , - 6]\]

\[\text{ Hence, the solution of the given set of inequalities is } ( - \infty , - 6] .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.2 | Q 10 | पृष्ठ १५

संबंधित प्रश्न

Solve: 12x < 50, when  x ∈ Z 


Solve: −4x > 30, when x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ N 


3x + 9 ≥ −x + 19 


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


−(x − 3) + 4 < 5 − 2x


\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{5x - 6}{x + 6} < 1\]


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve each of the following system of equations in R. 

3x − 1 ≥ 5, x + 2 > −1 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Mark the correct alternative in each of the following: 

If − 3x\[+\]17\[< -\]13, then


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve the inequality, 3x – 5 < x + 7, when x is an integer.


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve the following system of inequalities:

`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`


If |x + 3| ≥ 10, then ______.


If `1/(x - 2) < 0`, then x ______ 2.


If a < b and c < 0, then `a/c` ______ `b/c`.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?


A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?


If x < –5 and x > 2, then x ∈ (– 5, 2)


If p > 0 and q < 0, then p – q ______ p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×