Advertisements
Advertisements
प्रश्न
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
उत्तर
\[\text{ We have }, \]
\[\frac{\left| x - 2 \right|}{x - 2} > 0\]
\[\text{ As }, \left| x - 2 \right| = \binom{x - 2, x \geq 2}{2 - x, x < 2}\]
\[\text{ And } \frac{\left| x - 2 \right|}{x - 2} > 0 \text{ for } x > 2\]
\[\text{ So }, x > 2\]
\[ \therefore x \in \left( 2, \infty \right)\]
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ R
Solve: −4x > 30, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ N
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[\frac{6x - 5}{4x + 1} < 0\]
\[\frac{5x + 8}{4 - x} < 2\]
\[\frac{x - 1}{x + 3} > 2\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve each of the following system of equations in R.
11 − 5x > −4, 4x + 13 ≤ −11
Solve each of the following system of equations in R.
4x − 1 ≤ 0, 3 − 4x < 0
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Solve the following system of inequalities:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
If `|x - 2|/(x - 2) ≥ 0`, then ______.
If –x ≤ –4, then 2x ______ 8.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
If –3x + 17 < –13, then ______.
If `2/(x + 2) > 0`, then x ______ –2.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.