हिंदी

Solve for x, the inequality given below. 4x + 3 ≥ 2x + 17, 3x – 5 < –2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve for x, the inequality given below.

4x + 3 ≥ 2x + 17, 3x – 5 < –2

योग

उत्तर

4x + 3 ≥ 2x + 17

⇒ 4x – 2x ≥ 17 – 3

⇒ 2x ≥ 14

⇒ x ≥ 7  ......(i)

Also,

3x – 5 < –2

⇒ 3x < 3

⇒ x < 1  .....(ii)

Since, equations (i) and (ii) cannot be possible, simultaneously We conclude that x has no solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Linear Inequalities - Exercise [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 6 Linear Inequalities
Exercise | Q 6 | पृष्ठ १०७

संबंधित प्रश्न

Solve: 4x − 2 < 8, when x ∈ R 


−(x − 3) + 4 < 5 − 2x


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{3}{x - 2} < 1\]


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{5x + 8}{4 - x} < 2\]


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve each of the following system of equations in R.

2x − 7 > 5 − x, 11 − 5x ≤ 1


Solve each of the following system of equations in R. 

3x − 6 > 0, 2x − 5 > 0 


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve each of the following system of equations in R. 

\[0 < \frac{- x}{2} < 3\] 


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve the following system of inequalities:

`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


Solve for x, the inequality given below.

|x − 1| ≤ 5, |x| ≥ 2


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


Given that x, y and b are real numbers and x < y, b < 0, then ______.


If x > y and z < 0, then – xz ______ – yz.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×