Advertisements
Advertisements
प्रश्न
If x > y and z < 0, then – xz ______ – yz.
उत्तर
If x > y and z < 0, then – xz ______ – yz.
Explanation:
If x > y and z < 0, then
xz < yz
⇒ – xz > – yz
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ N
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[x - 2 \leq \frac{5x + 8}{3}\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{7x - 5}{8x + 3} > 4\]
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve each of the following system of equations in R.
11 − 5x > −4, 4x + 13 ≤ −11
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
Solve the inequality, 3x – 5 < x + 7, when x is an integer.
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
If `|x - 2|/(x - 2) ≥ 0`, then ______.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If `1/(x - 2) < 0`, then x ______ 2.
If a < b and c < 0, then `a/c` ______ `b/c`.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
Given that x, y and b are real numbers and x < y, b < 0, then ______.
If `2/(x + 2) > 0`, then x ______ –2.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.