Advertisements
Advertisements
प्रश्न
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
उत्तर
We have, 3x – 5 < x + 7
⇒ 3x < x + 12 .....(Adding 5 to both sides)
⇒ 2x < 12 ......(Subtracting x from both sides)
⇒ x < 6 ......(Dividing by 2 on both sides)
Solution set is {1, 2, 3, 4, 5}.
APPEARS IN
संबंधित प्रश्न
Solve: 4x − 2 < 8, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ Z
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{3}{x - 2} < 1\]
\[\frac{1}{x - 1} \leq 2\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{x - 1}{x + 3} > 2\]
\[\frac{7x - 5}{8x + 3} > 4\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
3x − 1 ≥ 5, x + 2 > −1
Solve each of the following system of equations in R.
2 (x − 6) < 3x − 7, 11 − 2x < 6 − x
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit?
Solve for x, |x + 1| + |x| > 3.
If `1/(x - 2) < 0`, then x ______ 2.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
If p > 0 and q < 0, then p + q ______ p.
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
State which of the following statement is True or False.
If xy < 0, then x < 0 and y < 0
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If x < –5 and x > 2, then x ∈ (– 5, 2)