हिंदी

Solve | X + 1 | + | X | > 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 

उत्तर

\[\text{ We have }, \left| x + 1 \right| + \left| x \right| > 3\]

\[\text{ As }, \left| x + 1 \right| = \binom{\left( x + 1 \right), x \geq - 1}{ - \left( x + 1 \right), x < - 1}\]

\[\text{ and } \left| x \right| = \binom{x, x \geq 0}{ - x, x < 0}\]

\[\text{ Case I: When } x < - 1, \]

\[\left| x + 1 \right| + \left| x \right| > 3\]

\[ \Rightarrow - \left( x + 1 \right) - x > 3\]

\[ \Rightarrow - 2x - 1 > 3\]

\[ \Rightarrow - 2x > 4\]

\[ \Rightarrow x < \frac{4}{- 2}\]

\[ \Rightarrow x < - 2\]

\[\text{ So }, x \in \left( - \infty , - 2 \right)\]

\[\text{ Case II: When } - 1 \leq x < 0, \]

\[\left| x + 1 \right| + \left| x \right| > 3\]

\[ \Rightarrow \left( x + 1 \right) - x > 3\]

\[ \Rightarrow 1 > 3, \text{ which is not possible }\]

\[\text{ So }, x \in \phi\]

\[\text{ Case III: When x } \geq 0, \]

\[\left| x + 1 \right| + \left| x \right| > 3\]

\[ \Rightarrow \left( x + 1 \right) + x > 3\]

\[ \Rightarrow 2x + 1 > 3\]

\[ \Rightarrow 2x > 2\]

\[ \Rightarrow x > \frac{2}{2}\]

\[ \Rightarrow x > 1\]

\[\text{ So }, x \in \left( 1, \infty \right)\]

\[\text{ From all the cases, we get }\]

\[x \in \left( - \infty , - 2 \right) \cup \left( 1, \infty \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.3 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.3 | Q 11 | पृष्ठ २२

संबंधित प्रश्न

Solve: −4x > 30, when  x ∈ R 


x + 5 > 4x − 10 


3x + 9 ≥ −x + 19 


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


2x + 6 ≥ 0, 4x − 7 < 0 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve each of the following system of equations in R. 

3x − 1 ≥ 5, x + 2 > −1 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]


Solve each of the following system of equations in R.

 10 ≤ −5 (x − 2) < 20 


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Mark the correct alternative in each of the following: 

If − 3x\[+\]17\[< -\]13, then


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


Solve the following system of inequalities:

`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If –x ≤ –4, then 2x ______ 8.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


If x is a real number and |x| < 3, then ______.


If |x + 2| ≤ 9, then ______.


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If x > – 5, then 4x ______ –20.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×