Advertisements
Advertisements
प्रश्न
If – 2x + 1 ≥ 9, then x ______ – 4.
उत्तर
If – 2x + 1 ≥ 9, then x ≤ – 4.
Explanation:
If – 2x + 1 ≥ 9 then
– 2x ≥ 9 – 1
⇒ – 2x ≥ 8
⇒ 2x ≤ – 8
⇒ x ≤ – 4
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ Z
3x − 7 > x + 1
3x + 9 ≥ −x + 19
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{3}{x - 2} < 1\]
\[\frac{x - 1}{x + 3} > 2\]
\[\frac{7x - 5}{8x + 3} > 4\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Mark the correct alternative in each of the following:
Given that x, y and b are real numbers and x\[<\]y, b\[>\]0, then
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Solve 1 ≤ |x – 2| ≤ 3.
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
If –3x + 17 < –13, then ______.
x and b are real numbers. If b > 0 and |x| > b, then ______.
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If x > y and z < 0, then – xz ______ – yz.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.