हिंदी

Mark the Correct Alternative in Each of the Following: Given that X, Y and B Are Real Numbers and X < Y, B > 0, Then - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 

विकल्प

  • \[\frac{x}{b < \frac{y}{b}}\]

  • \[\frac{x}{b \leq \frac{y}{b}}\]

  • \[\frac{x}{b > \frac{y}{b}}\]

  • \[\frac{x}{b \geq \frac{y}{b}}\]

MCQ

उत्तर

Given that x, y and b are real numbers and

 x\[<\]y, b\[>\]0. Both sides of an inequality can be multiplied or divided by the same positive number.

\[\therefore \frac{x}{b} < \frac{y}{b}\]

Hence, the correct option is (a). 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.8 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.8 | Q 3 | पृष्ठ ३२

संबंधित प्रश्न

Solve: −4x > 30, when x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ N 


3x − 7 > x + 1 


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{1}{x - 1} \leq 2\]


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{5x + 8}{4 - x} < 2\]


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve each of the following system of equations in R. 

2 (x − 6) < 3x − 7, 11 − 2x < 6 − 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve each of the following system of equations in R. 

\[0 < \frac{- x}{2} < 3\] 


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Solve  \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\] 


Solve \[\left| x + 1 \right| + \left| x \right| > 3\] 

 


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


If x ≥ –3, then x + 5 ______ 2.


Solve for x, the inequality given below.

|x − 1| ≤ 5, |x| ≥ 2


If x < 5, then ______.


If |x + 2| ≤ 9, then ______.


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If x > y and z < 0, then – xz ______ – yz.


If p > 0 and q < 0, then p – q ______ p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×