मराठी

Mark the Correct Alternative in Each of the Following: Given that X, Y and B Are Real Numbers and X < Y, B > 0, Then - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 

पर्याय

  • \[\frac{x}{b < \frac{y}{b}}\]

  • \[\frac{x}{b \leq \frac{y}{b}}\]

  • \[\frac{x}{b > \frac{y}{b}}\]

  • \[\frac{x}{b \geq \frac{y}{b}}\]

MCQ

उत्तर

Given that x, y and b are real numbers and

 x\[<\]y, b\[>\]0. Both sides of an inequality can be multiplied or divided by the same positive number.

\[\therefore \frac{x}{b} < \frac{y}{b}\]

Hence, the correct option is (a). 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Linear Inequations - Exercise 15.8 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 15 Linear Inequations
Exercise 15.8 | Q 3 | पृष्ठ ३२

संबंधित प्रश्‍न

Solve: −4x > 30, when  x ∈ R 


Solve: 4x − 2 < 8, when x ∈ R 


Solve: 4x − 2 < 8, when x ∈ N 


\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

2x − 7 > 5 − x, 11 − 5x ≤ 1


Solve each of the following system of equations in R.

5x − 1 < 24, 5x + 1 > −24 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve the following system of equation in R. 

\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\] 


Solve each of the following system of equations in R. 

\[0 < \frac{- x}{2} < 3\] 


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following: 

If − 3x\[+\]17\[< -\]13, then


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve 1 ≤ |x – 2| ≤ 3.


If x ≥ –3, then x + 5 ______ 2.


If –x ≤ –4, then 2x ______ 8.


If `1/(x - 2) < 0`, then x ______ 2.


Solve for x, the inequality given below.

`1/(|x| - 3) ≤ 1/2`


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If x < –5 and x > 2, then x ∈ (– 5, 2)


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If `2/(x + 2) > 0`, then x  ______ –2.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×