Advertisements
Advertisements
प्रश्न
Mark the correct alternative in each of the following:
Given that x, y and b are real numbers and x\[<\]y, b\[>\]0, then
पर्याय
\[\frac{x}{b < \frac{y}{b}}\]
\[\frac{x}{b \leq \frac{y}{b}}\]
\[\frac{x}{b > \frac{y}{b}}\]
\[\frac{x}{b \geq \frac{y}{b}}\]
उत्तर
Given that x, y and b are real numbers and
x\[<\]y, b\[>\]0. Both sides of an inequality can be multiplied or divided by the same positive number.
\[\therefore \frac{x}{b} < \frac{y}{b}\]
Hence, the correct option is (a).
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ N
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve each of the following system of equations in R.
4x − 1 ≤ 0, 3 − 4x < 0
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
Solve the following system of equation in R.
\[\frac{2x + 1}{7x - 1} > 5, \frac{x + 7}{x - 8} > 2\]
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve 1 ≤ |x – 2| ≤ 3.
If x ≥ –3, then x + 5 ______ 2.
If –x ≤ –4, then 2x ______ 8.
If `1/(x - 2) < 0`, then x ______ 2.
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If x < –5 and x > 2, then x ∈ (– 5, 2)
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If `2/(x + 2) > 0`, then x ______ –2.
If – 2x + 1 ≥ 9, then x ______ – 4.