हिंदी

Solve Each of the Following System of Equations in R. 3x − 6 > 0, 2x − 5 > 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following system of equations in R. 

3x − 6 > 0, 2x − 5 > 0 

उत्तर

\[3x - 6 > 0\]
\[ \Rightarrow 3x > 6\]
\[ \Rightarrow x > 2\]
\[ \Rightarrow x \in \left( 2, \infty \right) . . . \left( i \right)\]
\[\text{ Also }, 2x - 5 > 0\]
\[ \Rightarrow 2x > 5\]
\[ \Rightarrow x > \frac{5}{2}\]
\[ \Rightarrow x \in \left( \frac{5}{2}, \infty \right) . . . \left( ii \right)\]
\[\text{ Solution of the given set of inequalities is the intersection of } \left( i \right) \text{ and } \left( ii \right) . \]
\[\left( 2, \infty \right) \cap \left( \frac{5}{2}, \infty \right) = \left( \frac{5}{2}, \infty \right)\]
\[\text{ Thus, the solution of the given set of inequalities is } \left( \frac{5}{2}, \infty \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Linear Inequations - Exercise 15.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 15 Linear Inequations
Exercise 15.2 | Q 5 | पृष्ठ १५

संबंधित प्रश्न

Solve: 4x − 2 < 8, when x ∈ N 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\] 


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{1}{x - 1} \leq 2\]


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{7x - 5}{8x + 3} > 4\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Solve  \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]


Solve  \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\] 


Solve \[1 \leq \left| x - 2 \right| \leq 3\] 


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


If |x + 3| ≥ 10, then ______.


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


Solve for x, the inequality given below.

|x − 1| ≤ 5, |x| ≥ 2


If |x − 1| > 5, then ______.


If |x + 2| ≤ 9, then ______.


If x < –5 and x > 2, then x ∈ (– 5, 2)


If `2/(x + 2) > 0`, then x  ______ –2.


If x > y and z < 0, then – xz ______ – yz.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×