Advertisements
Advertisements
प्रश्न
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
उत्तर
\[3x - 6 > 0\]
\[ \Rightarrow 3x > 6\]
\[ \Rightarrow x > 2\]
\[ \Rightarrow x \in \left( 2, \infty \right) . . . \left( i \right)\]
\[\text{ Also }, 2x - 5 > 0\]
\[ \Rightarrow 2x > 5\]
\[ \Rightarrow x > \frac{5}{2}\]
\[ \Rightarrow x \in \left( \frac{5}{2}, \infty \right) . . . \left( ii \right)\]
\[\text{ Solution of the given set of inequalities is the intersection of } \left( i \right) \text{ and } \left( ii \right) . \]
\[\left( 2, \infty \right) \cap \left( \frac{5}{2}, \infty \right) = \left( \frac{5}{2}, \infty \right)\]
\[\text{ Thus, the solution of the given set of inequalities is } \left( \frac{5}{2}, \infty \right) .\]
APPEARS IN
संबंधित प्रश्न
Solve: 4x − 2 < 8, when x ∈ N
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{1}{x - 1} \leq 2\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{7x - 5}{8x + 3} > 4\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
If |x + 3| ≥ 10, then ______.
Solve for x, the inequality given below.
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
If |x − 1| > 5, then ______.
If |x + 2| ≤ 9, then ______.
If x < –5 and x > 2, then x ∈ (– 5, 2)
If `2/(x + 2) > 0`, then x ______ –2.
If x > y and z < 0, then – xz ______ – yz.
If – 2x + 1 ≥ 9, then x ______ – 4.