हिंदी

If |x + 3| ≥ 10, then ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If |x + 3| ≥ 10, then ______.

विकल्प

  • x ∈ (–13, 7]

  • x ∈ (–13, 7]

  • x ∈ (–∞, –13] ∪ [7, ∞)

  • x ∈ [–∞, –13] ∪ [7, ∞)

MCQ
रिक्त स्थान भरें

उत्तर

If |x + 3| ≥ 10, then x ∈ (–∞, –13] ∪ [7, ∞).

Explanation:

x ∈ (–∞, –13] ∪ [7, ∞) is the correct choice. Since |x + 3| ≥ 10.

⇒ x + 3 ≤ –10 or x + 3 ≥ 10

⇒ x ≤ –13 or x ≥ 7

⇒ x ∈ (–∞, –13] ∪ [7, ∞)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Linear Inequalities - Solved Examples [पृष्ठ १०५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 6 Linear Inequalities
Solved Examples | Q 13 | पृष्ठ १०५

संबंधित प्रश्न

Solve: 12x < 50, when  x ∈ Z 


Solve: 12x < 50, when x ∈ N 


Solve: −4x > 30, when x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ Z 


−(x − 3) + 4 < 5 − 2x


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{5x - 6}{x + 6} < 1\]


Solve each of the following system of equations in R.

1. x + 3 > 0, 2x < 14 


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Mark the correct alternative in each of the following: 

If − 3x\[+\]17\[< -\]13, then


Mark the correct alternative in each of the following:
Given that xy and are real numbers and x\[<\]yb\[>\]0, then

 


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


Solve the inequality, 3x – 5 < x + 7, when x is a natural number.


Solve |3 – 4x| ≥ 9.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


If –x ≤ –4, then 2x ______ 8.


If `1/(x - 2) < 0`, then x ______ 2.


Solve for x, the inequality given below.

`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If x < –5 and x > 2, then x ∈ (– 5, 2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×