Advertisements
Advertisements
प्रश्न
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
उत्तर
\[\text{ As }, \frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
\[ \Rightarrow \frac{1}{\left| x \right| - 3} - \frac{1}{2} < 0\]
\[ \Rightarrow \frac{2 - \left( \left| x \right| - 3 \right)}{2\left( \left| x \right| - 3 \right)} < 0\]
\[ \Rightarrow \frac{2 - \left| x \right| + 3}{\left| x \right| - 3} < 0\]
\[ \Rightarrow \frac{5 - \left| x \right|}{\left| x \right| - 3} < 0\]
\[\text{ Case I }: \text{ When } x \geq 0, \left| x \right| = x\]
\[\frac{5 - x}{x - 3} < 0\]
\[ \Rightarrow \left( 5 - x < 0 \text{ and } x - 3 > 0 \right) \text{ or } \left( 5 - x > 0 and x - 3 < 0 \right)\]
\[ \Rightarrow \left( x > 5 \text{ and } x > 3 \right) or \left( x < 5 \text{ and } x < 3 \right)\]
\[ \Rightarrow x > 5 \text{ and } x < 3\]
\[ \Rightarrow x \in [0, 3) \cup \left( 5, \infty \right)\]
\[\text{ Case II }: \text{ When } x \leq 0, \left| x \right| = - x, \]
\[\frac{5 + x}{- x - 3} < 0\]
\[ \Rightarrow \frac{x + 5}{x + 3} > 0\]
\[ \Rightarrow \left( x + 5 > 0 \text{ and } x + 3 > 0 \right) or \left( x + 5 < 0 \text{ and } x + 3 < 0 \right)\]
\[ \Rightarrow \left( x > - 5 \text{ and } x > - 3 \right) or \left( x < - 5 \text{ and } x < - 3 \right)\]
\[ \Rightarrow x > - 3 \text{ and } x < - 5\]
\[ \Rightarrow x \in \left( - \infty , - 5 \right) \cup ( - 3, 0]\]
\[\text{ So, from both the cases, we get }\]
\[x \in \left( - \infty , - 5 \right) \cup ( - 3, 0] \cup [0, 3) \cup \left( 5, \infty \right)\]
\[ \therefore x \in \left( - \infty , - 5 \right) \cup \left( - 3, 3 \right) \cup \left( 5, \infty \right)\]
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ Z
Solve: 4x − 2 < 8, when x ∈ Z
Solve: 4x − 2 < 8, when x ∈ N
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{3}{x - 2} < 1\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
3x − 6 > 0, 2x − 5 > 0
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Solve |3 – 4x| ≥ 9.
The cost and revenue functions of a product are given by C(x) = 20x + 4000 and R(x) = 60x + 2000, respectively, where x is the number of items produced and sold. How many items must be sold to realise some profit?
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If x ≥ –3, then x + 5 ______ 2.
Solve for x, the inequality given below.
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
If x < 5, then ______.
If x < –5 and x > 2, then x ∈ (– 5, 2)
If x > – 5, then 4x ______ –20.
If – 2x + 1 ≥ 9, then x ______ – 4.