Advertisements
Advertisements
प्रश्न
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
उत्तर
\[\text{ We have }, \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6 . . . . . \left( i \right)\]
\[\text{ As }, \left| x - 1 \right| = \binom{x - 1, x \geq 1}{1 - x, x < 1}; \]
\[\left| x - 2 \right| = \binom{x - 2, x \geq 2}{2 - x, x < 2}\text{ and }\]
\[\left| x - 3 \right| = \binom{x - 3, x \geq 3}{3 - x, x < 3}\]
\[\text{ Now }, \]
\[\text{ Case I: When } x < 1, \]
\[1 - x + 2 - x + 3 - x \geq 6\]
\[ \Rightarrow 6 - 3x \geq 6\]
\[ \Rightarrow 3x \leq 0\]
\[ \Rightarrow x \leq 0\]
\[\text{ So }, x \in ( - \infty , 0]\]
\[\text{ Case II: When } 1 \leq x < 2, \]
\[x - 1 + 2 - x + 3 - x \geq 6\]
\[ \Rightarrow 4 - x \geq 6\]
\[ \Rightarrow x \leq 4 - 6\]
\[ \Rightarrow x \leq - 2\]
\[\text{ So }, x \in \phi\]
\[\text{ Case III : When } 2 \leq x < 3, \]
\[x - 1 + x - 2 + 3 - x \geq 6\]
\[ \Rightarrow x \geq 6\]
\[\text{ So }, x \in \phi\]
\[\text{ Case IV : When } x \geq 3, \]
\[x - 1 + x - 2 + x - 3 \geq 6\]
\[ \Rightarrow 3x - 6 \geq 6\]
\[ \Rightarrow 3x \geq 12\]
\[ \Rightarrow x \geq \frac{12}{3}\]
\[ \Rightarrow x \geq 4\]
\[\text{ So }, x \in [4, \infty )\]
\[\text{ So, from all the four cases, we get }\]
\[x \in ( - \infty , 0] \cup [4, \infty )\]
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ Z
Solve: −4x > 30, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ N
3x + 9 ≥ −x + 19
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{3}{x - 2} < 1\]
\[\frac{x - 1}{x + 3} > 2\]
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve each of the following system of equations in R.
3x − 1 ≥ 5, x + 2 > −1
Solve each of the following system of equations in R.
11 − 5x > −4, 4x + 13 ≤ −11
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is
Solve the inequality, 3x – 5 < x + 7, when x is an integer.
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve for x, |x + 1| + |x| > 3.
Solve the following system of inequalities:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
If –x ≤ –4, then 2x ______ 8.
Solve for x, the inequality given below.
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
If –3x + 17 < –13, then ______.
x and b are real numbers. If b > 0 and |x| > b, then ______.
If |x − 1| > 5, then ______.
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)
If – 4x ≥ 12, then x ______ – 3.