Advertisements
Advertisements
प्रश्न
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
उत्तर
\[\frac{7x - 1}{2} < - 3\]
\[ \Rightarrow 7x - 1 < - 6\]
\[ \Rightarrow 7x < - 6 + 1\]
\[ \Rightarrow x < \frac{- 5}{7}\]
\[ \Rightarrow x \in \left( - \infty , \frac{- 5}{7} \right) . . . (i)\]
\[\text{ Also }, \frac{3x + 8}{5} + 11 < 0\]
\[ \Rightarrow \frac{3x + 8 + 55}{5} < 0\]
\[ \Rightarrow 3x + 63 < 0\]
\[ \Rightarrow 3x < - 63\]
\[ \Rightarrow x < - 21 \]
\[ \Rightarrow x \in \left( - \infty , - 21 \right) . . . (ii)\]
\[\text{ Hence, the solution to the given set of inequations is the intersection of } (i) \text{ and } (ii) . \]
\[\left( - \infty , \frac{- 5}{7} \right) \cap \left( - \infty - 21 \right) = \left( - \infty , - 21 \right)\]
\[\text{ Hence, the solution to the given set of inequations is } \left( - \infty , - 21 \right) .\]
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ N
Solve: 4x − 2 < 8, when x ∈ N
3x − 7 > x + 1
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{3x - 2}{5} \leq \frac{4x - 3}{2}\]
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[x - 2 \leq \frac{5x + 8}{3}\]
\[\frac{x - 1}{x + 3} > 2\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve each of the following system of equations in R.
3x − 1 ≥ 5, x + 2 > −1
Solve each of the following system of equations in R.
\[0 < \frac{- x}{2} < 3\]
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Solve the inequality, 3x – 5 < x + 7, when x is an integer.
Solve the following system of inequalities:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
If |x − 1| ≤ 2, then –1 ______ x ______ 3
Solve for x, the inequality given below.
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.
A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?
If –3x + 17 < –13, then ______.
If – 4x ≥ 12, then x ______ – 3.
If – 2x + 1 ≥ 9, then x ______ – 4.