English

Solve Each of the Following System of Equations in R. 7 X − 1 2 < − 3 , 3 X + 8 5 + 11 < 0 - Mathematics

Advertisements
Advertisements

Question

Solve each of the following system of equations in R. 

\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]

Solution

\[\frac{7x - 1}{2} < - 3\]
\[ \Rightarrow 7x - 1 < - 6\]
\[ \Rightarrow 7x < - 6 + 1\]
\[ \Rightarrow x < \frac{- 5}{7}\]
\[ \Rightarrow x \in \left( - \infty , \frac{- 5}{7} \right) . . . (i)\]
\[\text{ Also }, \frac{3x + 8}{5} + 11 < 0\]
\[ \Rightarrow \frac{3x + 8 + 55}{5} < 0\]
\[ \Rightarrow 3x + 63 < 0\]
\[ \Rightarrow 3x < - 63\]
\[ \Rightarrow x < - 21 \]
\[ \Rightarrow x \in \left( - \infty , - 21 \right) . . . (ii)\]
\[\text{ Hence, the solution to the given set of inequations is the intersection of } (i) \text{ and } (ii) . \]
\[\left( - \infty , \frac{- 5}{7} \right) \cap \left( - \infty - 21 \right) = \left( - \infty , - 21 \right)\]
\[\text{ Hence, the solution to the given set of inequations is } \left( - \infty , - 21 \right) .\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.2 | Q 16 | Page 15

RELATED QUESTIONS

Solve: 12x < 50, when  x ∈ Z 


Solve: 12x < 50, when x ∈ N 


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]


\[\frac{3}{x - 2} < 1\]


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{5x + 8}{4 - x} < 2\]


2x + 6 ≥ 0, 4x − 7 < 0 


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve  

\[\left| 4 - x \right| + 1 < 3\] 


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve  \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\] 


Solve  \[\left| 3 - 4x \right| \geq 9\]


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve `(x - 2)/(x + 5) > 2`.


Solve 1 ≤ |x – 2| ≤ 3.


Solve for x, |x + 1| + |x| > 3.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


If –x ≤ –4, then 2x ______ 8.


If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


If |x + 2| ≤ 9, then ______.


If – 4x ≥ 12, then x ______ – 3.


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If p > 0 and q < 0, then p – q ______ p.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×