Advertisements
Advertisements
Question
Solve each of the following system of equations in R.
\[\frac{7x - 1}{2} < - 3, \frac{3x + 8}{5} + 11 < 0\]
Solution
\[\frac{7x - 1}{2} < - 3\]
\[ \Rightarrow 7x - 1 < - 6\]
\[ \Rightarrow 7x < - 6 + 1\]
\[ \Rightarrow x < \frac{- 5}{7}\]
\[ \Rightarrow x \in \left( - \infty , \frac{- 5}{7} \right) . . . (i)\]
\[\text{ Also }, \frac{3x + 8}{5} + 11 < 0\]
\[ \Rightarrow \frac{3x + 8 + 55}{5} < 0\]
\[ \Rightarrow 3x + 63 < 0\]
\[ \Rightarrow 3x < - 63\]
\[ \Rightarrow x < - 21 \]
\[ \Rightarrow x \in \left( - \infty , - 21 \right) . . . (ii)\]
\[\text{ Hence, the solution to the given set of inequations is the intersection of } (i) \text{ and } (ii) . \]
\[\left( - \infty , \frac{- 5}{7} \right) \cap \left( - \infty - 21 \right) = \left( - \infty , - 21 \right)\]
\[\text{ Hence, the solution to the given set of inequations is } \left( - \infty , - 21 \right) .\]
APPEARS IN
RELATED QUESTIONS
Solve: 12x < 50, when x ∈ Z
Solve: 12x < 50, when x ∈ N
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[\frac{2x + 3}{5} - 2 < \frac{3\left( x - 2 \right)}{5}\]
\[\frac{3}{x - 2} < 1\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{5x + 8}{4 - x} < 2\]
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve each of the following system of equations in R.
4x − 1 ≤ 0, 3 − 4x < 0
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve \[\frac{\left| x + 2 \right| - x}{x} < 2\]
Solve \[\frac{\left| x - 2 \right| - 1}{\left| x - 2 \right| - 2} \leq 0\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
If x and a are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve `(x - 2)/(x + 5) > 2`.
Solve 1 ≤ |x – 2| ≤ 3.
Solve for x, |x + 1| + |x| > 3.
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
If –x ≤ –4, then 2x ______ 8.
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.
If |x + 2| ≤ 9, then ______.
If – 4x ≥ 12, then x ______ – 3.
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If p > 0 and q < 0, then p – q ______ p.
If – 2x + 1 ≥ 9, then x ______ – 4.