English

Mark the Correct Alternative in Each of the Following: | X − 1 | > 5, Then - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 

Options

  • (a) x\[\in\](\[-\]4, 6)

  • (b) \[\in\][\[-\]4, 6]

  • (c) x\[\in\](\[-\]\[\infty\]\[-\]4) \[\cup\](6, \[\infty\]

     
     
  • (d) x\[\in\](\[-\]\[\infty\]\[-\]4) \[\cup\][6\[\infty\]. 

MCQ

Solution

\[\left| x - 1 \right| > 5\]
\[ \Rightarrow x - 1 > 5 \text{ or } x - 1 < - 5\]
\[ \Rightarrow x > 5 + 1 \text{ or } x < - 5 + 1\]
\[ \Rightarrow x > 6 \text{ or } x < - 4\]
\[ \Rightarrow x \in \left( - \infty , - 4 \right) \cup \left( 6, \infty \right)\]

Hence, the correct option is (c).

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.8 [Page 32]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.8 | Q 6 | Page 32

RELATED QUESTIONS

Solve: 12x < 50, when x ∈ R 


Solve: −4x > 30, when  x ∈ R 


Solve: 4x − 2 < 8, when x ∈ R 


x + 5 > 4x − 10 


3x + 9 ≥ −x + 19 


\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]


\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]


\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]


\[x - 2 \leq \frac{5x + 8}{3}\] 


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{3}{x - 2} < 1\]


\[\frac{4x + 3}{2x - 5} < 6\] 


\[\frac{5x - 6}{x + 6} < 1\]


\[\frac{x - 1}{x + 3} > 2\]


\[\frac{7x - 5}{8x + 3} > 4\]


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

20. −5 < 2x − 3 < 5


Solve  

\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\] 


Solve  \[\frac{\left| x - 2 \right|}{x - 2} > 0\] 


Solve 

\[\left| \frac{2x - 1}{x - 1} \right| > 2\] 


Write the solution set of the inequation 

\[x + \frac{1}{x} \geq 2\] 


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Solve the inequality, 3x – 5 < x + 7, when x is an integer.


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×