Advertisements
Advertisements
Question
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Options
(a) x\[\in\](\[-\]4, 6)
(b) x \[\in\][\[-\]4, 6]
(c) x\[\in\](\[-\]\[\infty\]\[-\]4) \[\cup\](6, \[\infty\]
(d) x\[\in\](\[-\]\[\infty\]\[-\]4) \[\cup\][6\[\infty\].
Solution
\[\left| x - 1 \right| > 5\]
\[ \Rightarrow x - 1 > 5 \text{ or } x - 1 < - 5\]
\[ \Rightarrow x > 5 + 1 \text{ or } x < - 5 + 1\]
\[ \Rightarrow x > 6 \text{ or } x < - 4\]
\[ \Rightarrow x \in \left( - \infty , - 4 \right) \cup \left( 6, \infty \right)\]
Hence, the correct option is (c).
APPEARS IN
RELATED QUESTIONS
Solve: 12x < 50, when x ∈ R
Solve: −4x > 30, when x ∈ R
Solve: 4x − 2 < 8, when x ∈ R
x + 5 > 4x − 10
3x + 9 ≥ −x + 19
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{4 + 2x}{3} \geq \frac{x}{2} - 3\]
\[x - 2 \leq \frac{5x + 8}{3}\]
\[\frac{2x - 3}{3x - 7} > 0\]
\[\frac{3}{x - 2} < 1\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{5x - 6}{x + 6} < 1\]
\[\frac{x - 1}{x + 3} > 2\]
\[\frac{7x - 5}{8x + 3} > 4\]
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve \[\frac{\left| x - 2 \right|}{x - 2} > 0\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
Solve the inequality, 3x – 5 < x + 7, when x is an integer.
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
Solve for x, the inequality given below.
`-5 ≤ (2 - 3x)/4 ≤ 9`
The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.
State which of the following statement is True or False.
If x < –5 and x < –2, then x ∈ (–∞, –5)