Advertisements
Advertisements
प्रश्न
A solution is to be kept between 40°C and 45°C. What is the range of temperature in degree fahrenheit, if the conversion formula is F = `9/5` C + 32?
उत्तर
Let temperature in Celsius be C.
Let temperature in Fahrenheit be F.
Solution should be kept between 40°C and 45°C.
⇒ 40° < C < 45°
Multiplying each term by `9/5`, we get,
⇒ 72° < `9^circ/5`C < 81°
Adding 32° to each term, we get,
⇒ 104° < `9^circ/5` C + 32° < 113°
⇒ 104° < F < 113°
Hence, the range of temperature in Fahrenheit should be between 104°F and 113°F.
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ Z
Solve: 4x − 2 < 8, when x ∈ R
3x − 7 > x + 1
\[2\left( 3 - x \right) \geq \frac{x}{5} + 4\]
\[\frac{2\left( x - 1 \right)}{5} \leq \frac{3\left( 2 + x \right)}{7}\]
\[\frac{x - 1}{x + 3} > 2\]
\[\frac{7x - 5}{8x + 3} > 4\]
Solve each of the following system of equations in R.
11 − 5x > −4, 4x + 13 ≤ −11
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve
\[\left| \frac{2x - 1}{x - 1} \right| > 2\]
Mark the correct alternative in each of the following:
If x is a real number and \[\left| x \right|\]\[<\]5, then
Mark the correct alternative in each of the following:
If \[\left| x + 2 \right|\]\[\leq\]9, then
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve `(x - 2)/(x + 5) > 2`.
The length of a rectangle is three times the breadth. If the minimum perimeter of the rectangle is 160 cm, then ______.
If `1/(x - 2) < 0`, then x ______ 2.
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
A company manufactures cassettes. Its cost and revenue functions are C(x) = 26,000 + 30x and R(x) = 43x, respectively, where x is the number of cassettes produced and sold in a week. How many cassettes must be sold by the company to realise some profit?
The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.
The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.
If –3x + 17 < –13, then ______.
If x is a real number and |x| < 3, then ______.
x and b are real numbers. If b > 0 and |x| > b, then ______.
If p > 0 and q < 0, then p – q ______ p.