Advertisements
Advertisements
प्रश्न
If |x − 1| ≤ 2, then –1 ______ x ______ 3
उत्तर
If |x − 1| ≤ 2, then –1 ≤ x ≤ 3.
Explanation:
|x − 1| ≤ 2 ⇒ –2 ≤ x – 1 ≤ 2 ⇒ –1 ≤ x ≤ 3.
APPEARS IN
संबंधित प्रश्न
Solve: −4x > 30, when x ∈ N
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{x - 1}{x + 3} > 2\]
\[\frac{7x - 5}{8x + 3} > 4\]
\[\frac{x}{x - 5} > \frac{1}{2}\]
Solve each of the following system of equations in R.
2x − 7 > 5 − x, 11 − 5x ≤ 1
2x + 6 ≥ 0, 4x − 7 < 0
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve the following system of equation in R.
x + 5 > 2(x + 1), 2 − x < 3 (x + 2)
Solve each of the following system of equations in R.
\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Mark the correct alternative in each of the following:
\[\left| x - 1 \right|\]\[>\]5, then
Mark the correct alternative in each of the following:
The inequality representing the following graph is
Mark the correct alternative in each of the following:
If \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then
Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then
Solve for x, `(|x + 3| + x)/(x + 2) > 1`.
If –x ≤ –4, then 2x ______ 8.
Solve for x, the inequality given below.
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.
If x < 5, then ______.
If |x − 1| > 5, then ______.
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If `2/(x + 2) > 0`, then x ______ –2.
If x > – 5, then 4x ______ –20.
If – 2x + 1 ≥ 9, then x ______ – 4.