मराठी

If |x − 1| ≤ 2, then –1 ______ x ______ 3 - Mathematics

Advertisements
Advertisements

प्रश्न

If |x − 1| ≤ 2, then –1 ______ x ______ 3

रिकाम्या जागा भरा

उत्तर

If |x − 1| ≤ 2, then –1 x 3. 

Explanation:

|x − 1| ≤ 2 ⇒ –2 ≤ x – 1 ≤ 2 ⇒ –1 ≤ x ≤ 3.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Linear Inequalities - Solved Examples [पृष्ठ १०६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 6 Linear Inequalities
Solved Examples | Q 15 (v) | पृष्ठ १०६

संबंधित प्रश्‍न

Solve: −4x > 30, when x ∈ N 


\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]


\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]


\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\] 


\[\frac{x - 1}{x + 3} > 2\]


\[\frac{7x - 5}{8x + 3} > 4\]


\[\frac{x}{x - 5} > \frac{1}{2}\] 


Solve each of the following system of equations in R.

2x − 7 > 5 − x, 11 − 5x ≤ 1


2x + 6 ≥ 0, 4x − 7 < 0 


Solve each of the following system of equations in R. 

2x + 5 ≤ 0, x − 3 ≤ 0 


Solve the following system of equation in R. 

 x + 5 > 2(x + 1), 2 − x < 3 (x + 2)


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\left| 3 - 4x \right| \geq 9\]


Mark the correct alternative in each of the following:

\[\left| x - 1 \right|\]\[>\]5, then 


Mark the correct alternative in each of the following:
The inequality representing the following graph is 


Mark the correct alternative in each of the following:
If  \[\frac{\left| x - 2 \right|}{x - 2}\]\[\geq\] then


Mark the correct alternative in each of the following:
If \[\left| x + 3 \right|\]\[\geq\]10, then


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


If –x ≤ –4, then 2x ______ 8.


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


The water acidity in a pool is considerd normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are 8.48 and 8.35, find the range of pH value for the third reading that will result in the acidity level being normal.


If x < 5, then ______.


If |x − 1| > 5, then ______.


If `(-3)/4 x ≤ – 3`, then x ______ 4.


If `2/(x + 2) > 0`, then x  ______ –2.


If x > – 5, then 4x ______ –20.


If – 2x + 1 ≥ 9, then x ______ – 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×