Advertisements
Advertisements
प्रश्न
Solve \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
उत्तर
\[\text{ As }, \frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]
\[ \Rightarrow \frac{1}{\left| x \right| - 3} - \frac{1}{2} \leq 0\]
\[ \Rightarrow \frac{2 - \left( \left| x \right| - 3 \right)}{2\left( \left| x \right| - 3 \right)} \leq 0\]
\[ \Rightarrow \frac{2 - \left| x \right| + 3}{2\left( \left| x \right| - 3 \right)} \leq 0\]
\[ \Rightarrow \frac{5 - \left| x \right|}{\left| x \right| - 3} \leq 0\]
\[\text{ Case I: When } x \geq 0, \left| x \right| = x, \]
\[\frac{5 - x}{x - 3} \leq 0\]
\[ \Rightarrow \left( 5 - x \leq 0 \text{ and } x - 3 > 0 \right) \text{ or } \left( 5 - x \geq 0 \text{ and } x - 3 < 0 \right)\]
\[ \Rightarrow \left( x \geq 5 \text{ and } x > 3 \right) \text{ or } \left( x \leq 5 \text{ and } x < 3 \right)\]
\[ \Rightarrow x \geq 5 or x < 3\]
\[ \Rightarrow x \in \left( 0, 3 \right) \cup [5, \infty )\]
\[\text{ Case II: When } x < 0, \left| x \right| = - x, \]
\[\frac{5 + x}{- x - 3} \leq 0\]
\[ \Rightarrow \frac{x + 5}{x + 3} \geq 0\]
\[ \Rightarrow \left( x + 5 > 0 \text{ and } x + 3 > 0 \right) or \left( x + 5 < 0 \text{ and } x + 3 < 0 \right)\]
\[ \Rightarrow \left( x > - 5 \text{ and } x > - 3 \right) \text{ or } \left( x < - 5 \text{ and } x < - 3 \right)\]
\[ \Rightarrow x > - 3 \text{ or } x < - 5\]
\[ \Rightarrow x \in \left( - \infty , - 5 \right) \cup \left( - 3, \infty \right)\]
\[\text{ So, from both the cases, we get }\]
\[x \in \left( - \infty , - 5 \right) \cup \left( - 3, \infty \right) \cup \left( 0, 3 \right) \cup [5, \infty )\]
\[ \therefore x \in ( - \infty , - 5] \cup \left( - 3, 3 \right) \cup [5, \infty )\]
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ N
Solve: 4x − 2 < 8, when x ∈ N
3x − 7 > x + 1
x + 5 > 4x − 10
\[\frac{2x + 3}{4} - 3 < \frac{x - 4}{3} - 2\]
\[\frac{4x + 3}{2x - 5} < 6\]
\[\frac{5x - 6}{x + 6} < 1\]
Solve each of the following system of equations in R.
1. x + 3 > 0, 2x < 14
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
Solve each of the following system of equations in R.
2x − 3 < 7, 2x > −4
Solve each of the following system of equations in R.
2x + 5 ≤ 0, x − 3 ≤ 0
Solve each of the following system of equations in R.
5x − 1 < 24, 5x + 1 > −24
Solve each of the following system of equations in R.
3x − 1 ≥ 5, x + 2 > −1
Solve each of the following system of equations in R.
20. −5 < 2x − 3 < 5
Solve each of the following system of equations in R. \[\frac{4}{x + 1} \leq 3 \leq \frac{6}{x + 1}, x > 0\]
Solve
\[\left| x + \frac{1}{3} \right| > \frac{8}{3}\]
Solve
\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\]
Solve \[\left| x - 1 \right| + \left| x - 2 \right| + \left| x - 3 \right| \geq 6\]
Solve \[1 \leq \left| x - 2 \right| \leq 3\]
Write the solution set of the inequation
\[x + \frac{1}{x} \geq 2\]
Mark the correct alternative in each of the following:
Given that x, y and b are real numbers and x\[<\]y, b\[>\]0, then
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve for x, |x + 1| + |x| > 3.
Solve the following system of inequalities:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
If –x ≤ –4, then 2x ______ 8.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there is 460 litres of the 9% solution, how many litres of 3% solution will have to be added?
If –3x + 17 < –13, then ______.
If x is a real number and |x| < 3, then ______.
If x < –5 and x > 2, then x ∈ (– 5, 2)
If `(-3)/4 x ≤ – 3`, then x ______ 4.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.
If – 2x + 1 ≥ 9, then x ______ – 4.