Advertisements
Advertisements
प्रश्न
Solve each of the following system of equations in R.
x − 2 > 0, 3x < 18
उत्तर
\[\text{ We have }, x - 2 > 0\]
\[ \Rightarrow x > 2\]
\[ \Rightarrow x \in \left( 2, \infty \right) . . . \left( i \right)\]
\[\text{ Also }, 3x < 18\]
\[ \Rightarrow x < 6\]
\[ \Rightarrow x \in \left( - \infty , 6 \right) . . . \left( ii \right)\]
\[\text{ Solution of the given set of the inequations is intersection of } \left( i \right) \text{ and } \left( ii \right)\]
\[\left( 2, \infty \right) \cap \left( - \infty , 6 \right) = (2, 6)\]
\[\text{ Thus }, (2, 6) \text{ is the solution of the given set of inequalities } .\]
APPEARS IN
संबंधित प्रश्न
Solve: 12x < 50, when x ∈ R
Solve: 12x < 50, when x ∈ N
Solve: −4x > 30, when x ∈ Z
3x − 7 > x + 1
3x + 9 ≥ −x + 19
\[\frac{x}{5} < \frac{3x - 2}{4} - \frac{5x - 3}{5}\]
\[\frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}\]
\[\frac{x - 1}{3} + 4 < \frac{x - 5}{5} - 2\]
\[\frac{5 - 2x}{3} < \frac{x}{6} - 5\]
\[\frac{5x + 8}{4 - x} < 2\]
Solve each of the following system of equations in R.
\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]
Solve each of the following system of equations in R.
10 ≤ −5 (x − 2) < 20
Solve
\[\left| 4 - x \right| + 1 < 3\]
Solve \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]
Solve \[\left| x + 1 \right| + \left| x \right| > 3\]
Solve \[\left| 3 - 4x \right| \geq 9\]
Mark the correct alternative in each of the following:
If − 3x\[+\]17\[< -\]13, then
Mark the correct alternative in each of the following:
The linear inequality representing the solution set given in
Solve the inequality, 3x – 5 < x + 7, when x is a natural number.
Solve the inequality, 3x – 5 < x + 7, when x is a whole number.
Solve the inequality, 3x – 5 < x + 7, when x is an integer.
Solve the inequality, 3x – 5 < x + 7, when x is a real number.
Solve |3 – 4x| ≥ 9.
Solve for x, |x + 1| + |x| > 3.
If a < b and c < 0, then `a/c` ______ `b/c`.
If |x − 1| ≤ 2, then –1 ______ x ______ 3
If |3x – 7| > 2, then x ______ `5/3` or x ______ 3.
Solve for x, the inequality given below.
`1/(|x| - 3) ≤ 1/2`
Solve for x, the inequality given below.
|x − 1| ≤ 5, |x| ≥ 2
Solve for x, the inequality given below.
4x + 3 ≥ 2x + 17, 3x – 5 < –2
The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.
If |x + 2| ≤ 9, then ______.
If – 4x ≥ 12, then x ______ – 3.
If `2/(x + 2) > 0`, then x ______ –2.
If p > 0 and q < 0, then p – q ______ p.
If |x + 2| > 5, then x ______ – 7 or x ______ 3.