English

Solve 1 ≤ | X − 2 | ≤ 3 - Mathematics

Advertisements
Advertisements

Question

Solve \[1 \leq \left| x - 2 \right| \leq 3\] 

Solution

\[\text{ As }, 1 \leq \left| x - 2 \right| \leq 3\]
\[ \Rightarrow \left| x - 2 \right| \geq 1 \text{ and } \left| x - 2 \right| \leq 3\]
\[ \Rightarrow \left( \left( x - 2 \right) \leq - 1 \text{ or } \left( x - 2 \right) \geq 1 \right) \text{ and } \left( - 3 \leq \left( x - 2 \right) \leq 3 \right) \left( As, \left| x \right| \geq a \Rightarrow x \leq - a or x \geq a; \text{ and } \left| x \right| \leq a \Rightarrow - a \leq x \leq a \right)\]
\[ \Rightarrow \left( x \leq 1 \text{ or } x \geq 3 \right) \text{ and } \left( - 3 + 2 \leq x \leq 3 + 2 \right)\]
\[ \Rightarrow \left( x \leq 1 or x \geq 3 \right) \text{ and } \left( - 1 \leq x \leq 5 \right)\]
\[ \Rightarrow x \in ( - \infty , 1] \cup [3, \infty ) \text{ and } x \in \left[ - 1, 5 \right]\]
\[ \therefore x \in \left[ - 1, 1 \right] \cup \left[ 3, 5 \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Linear Inequations - Exercise 15.3 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 15 Linear Inequations
Exercise 15.3 | Q 12 | Page 22

RELATED QUESTIONS

Solve: 12x < 50, when  x ∈ Z 


Solve: 4x − 2 < 8, when x ∈ Z 


3x − 7 > x + 1 


\[\frac{6x - 5}{4x + 1} < 0\]


\[\frac{2x - 3}{3x - 7} > 0\] 


\[\frac{7x - 5}{8x + 3} > 4\]


Solve each of the following system of equations in R.

2x − 7 > 5 − x, 11 − 5x ≤ 1


Solve each of the following system of equations in R.

x − 2 > 0, 3x < 18 


Solve each of the following system of equations in R. 

2x − 3 < 7, 2x > −4 


Solve each of the following system of equations in R. 

 4x − 1 ≤ 0, 3 − 4x < 0 


Solve each of the following system of equations in R. 

\[\frac{2x - 3}{4} - 2 \geq \frac{4x}{3} - 6, 2\left( 2x + 3 \right) < 6\left( x - 2 \right) + 10\]


Solve each of the following system of equations in R.

 10 ≤ −5 (x − 2) < 20 


Solve  

\[\left| \frac{3x - 4}{2} \right| \leq \frac{5}{12}\] 


Solve  \[\frac{1}{\left| x \right| - 3} < \frac{1}{2}\]


Solve  \[\frac{\left| x + 2 \right| - x}{x} < 2\] 


Solve  \[\frac{1}{\left| x \right| - 3} \leq \frac{1}{2}\]


Mark the correct alternative in each of the following:
If is a real number and  \[\left| x \right|\]\[<\]5, then


Mark the correct alternative in each of the following:
If and are real numbers such that a\[>\]0 and \\left| x \right|\]\[>\]a, then

 


Mark the correct alternative in each of the following:
The solution set of the inequation \[\left| x + 2 \right|\]\[\leq\]5 is 


Solve the inequality, 3x – 5 < x + 7, when x is a whole number.


Solve the inequality, 3x – 5 < x + 7, when x is an integer.


Solve the inequality, 3x – 5 < x + 7, when x is a real number.


Solve |3 – 4x| ≥ 9.


Solve for x, `(|x + 3| + x)/(x + 2) > 1`.


If |x + 3| ≥ 10, then ______.


If x ≥ –3, then x + 5 ______ 2.


If |x − 1| ≤ 2, then –1 ______ x ______ 3


Solve for x, the inequality given below.

`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`


Solve for x, the inequality given below.

`-5 ≤ (2 - 3x)/4 ≤ 9`


The longest side of a triangle is twice the shortest side and the third side is 2cm longer than the shortest side. If the perimeter of the triangle is more than 166 cm then find the minimum length of the shortest side.


In drilling world’s deepest hole it was found that the temperature T in degree celcius, x km below the earth’s surface was given by T = 30 + 25(x – 3), 3 ≤ x ≤ 15. At what depth will the temperature be between 155°C and 205°C?


Given that x, y and b are real numbers and x < y, b < 0, then ______.


If |x − 1| > 5, then ______.


State which of the following statement is True or False.

If x < –5 and x < –2, then x ∈ (–∞, –5)


If x < –5 and x > 2, then x ∈ (– 5, 2)


If – 4x ≥ 12, then x ______ – 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×