Advertisements
Advertisements
प्रश्न
यदि `1/sin^2θ-1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तो θ का मान ज्ञात कीजिए।
उत्तर
`1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`
cosec2θ - sec2θ - cot2θ - tan2θ -cos2θ - sin2θ = -3
cosec2θ - cot2θ - sec2θ - tan2θ - (cos2θ - sin2θ) = -3
1 - (sec2θ + tan2θ) - 1 = -3
- (sec2θ + tan2θ) = -3
1 + tan2θ + tan2θ = 3
2 tan2θ = 3 - 1
2 tan2θ = 2
tan2θ = 1
tanθ = tan45
θ = 45°
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए।
(secθ - cosθ)(cotθ + tanθ) = tanθ secθ
सिद्ध कीजिए।
cotθ + tanθ = cosecθ secθ
सिद्ध कीजिए।
sin4θ - cos4θ = 1 - 2cos2θ
सिद्ध कीजिए।
secθ + tanθ = `cosθ/(1 - sinθ)`
सिद्ध कीजिए।
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2 = sinA cosA`
सिद्ध कीजिए।
sec4A (1 - sin4A) - 2tan2A = 1
सिद्ध कीजिए।
`1/(1 - sintheta) + 1/(1 + sintheta) = 2sec^2theta`
सिद्ध कीजिए।
sec6x - tan6x = 1 + 3sec2x × tan2x
सिद्ध कीजिए।
`tantheta/(sectheta + 1) = (sectheta - 1)/tantheta`
यदि sin θ = `11/61` हो, तो त्रिकोणमितीय सर्वसमिका का उपयोग करके cos θ का मान ज्ञात करो।