Advertisements
Advertisements
Question
यदि `1/sin^2θ-1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तो θ का मान ज्ञात कीजिए।
Solution
`1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`
cosec2θ - sec2θ - cot2θ - tan2θ -cos2θ - sin2θ = -3
cosec2θ - cot2θ - sec2θ - tan2θ - (cos2θ - sin2θ) = -3
1 - (sec2θ + tan2θ) - 1 = -3
- (sec2θ + tan2θ) = -3
1 + tan2θ + tan2θ = 3
2 tan2θ = 3 - 1
2 tan2θ = 2
tan2θ = 1
tanθ = tan45
θ = 45°
APPEARS IN
RELATED QUESTIONS
यदि tanθ = `3/4` तो secθ तथा cosθ का मान ज्ञात कीजिए।
यदि cotθ = `40/9` तो cosecθ तथा sinθ का मान ज्ञात कीजिए।
सिद्ध कीजिए।
cos2θ(1 + tan2θ) = 1
सिद्ध कीजिए।
cotθ + tanθ = cosecθ secθ
सिद्ध कीजिए।
sin4θ - cos4θ = 1 - 2cos2θ
सिद्ध कीजिए।
`tantheta/(sectheta - 1) = (tantheta + sectheta + 1)/(tantheta + sectheta - 1)`
सिद्ध कीजिए।
tan4θ + tan2θ = sec4θ - sec2θ
सिद्ध कीजिए।
`1/(1 - sintheta) + 1/(1 + sintheta) = 2sec^2theta`
सिद्ध कीजिए।
`tantheta/(sectheta + 1) = (sectheta - 1)/tantheta`
sin2θ + cos2θ का मान ज्ञात कीजिए।
हल:
Δ ABC में, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(पायथागोरस प्रमेय)
दोनों पक्षों में AC2 से भाग देने पर,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परन्तु `"AB"/"AC" = square और "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`