Advertisements
Advertisements
Question
सिद्ध कीजिए।
`tantheta/(sectheta - 1) = (tantheta + sectheta + 1)/(tantheta + sectheta - 1)`
Solution
`1 + tan^2theta = sec^2theta` ................(सर्वसमिका)
∵ `tan^2theta = sec^2theta - 1`
∴ `tantheta xx tantheta = (sectheta + 1)(sectheta - 1)`
∴ `tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`
तुल्य अनुपात के सिद्धांत से,
`tantheta/((sectheta - 1)) = ((sectheta + 1))/tantheta = (tantheta + sectheta + 1)/(sectheta - 1 + tantheta)`
∴ `tantheta/(sectheta - 1) = (tantheta + sectheta + 1)/(tantheta + sectheta - 1)`.
APPEARS IN
RELATED QUESTIONS
यदि sinθ = `7/25`, तो cosθ तथा tanθ का मान ज्ञात कीजिए।
सिद्ध कीजिए।
`sin^2theta/costheta + costheta = sectheta`
सिद्ध कीजिए।
secθ + tanθ = `cosθ/(1 - sinθ)`
सिद्ध कीजिए।
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2 = sinA cosA`
सिद्ध कीजिए।
sec4A (1 - sin4A) - 2tan2A = 1
सिद्ध कीजिए।
sec2θ + cosec2θ = sec2θ × cosec2θ
सिद्ध कीजिए।
`1/(1 - sintheta) + 1/(1 + sintheta) = 2sec^2theta`
सिद्ध कीजिए।
`(sintheta - costheta + 1)/(sintheta + costheta - 1) = 1/(sectheta - tantheta)`
यदि sinθ = `11/61`, तो सर्वसमिका का उपयोग करके cosθ का मान ज्ञात कीजिए।
θ का निरसन कीजिए:
x = r cosθ तथा y = r sinθ