Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए।
`tantheta/(sectheta - 1) = (tantheta + sectheta + 1)/(tantheta + sectheta - 1)`
उत्तर
`1 + tan^2theta = sec^2theta` ................(सर्वसमिका)
∵ `tan^2theta = sec^2theta - 1`
∴ `tantheta xx tantheta = (sectheta + 1)(sectheta - 1)`
∴ `tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`
तुल्य अनुपात के सिद्धांत से,
`tantheta/((sectheta - 1)) = ((sectheta + 1))/tantheta = (tantheta + sectheta + 1)/(sectheta - 1 + tantheta)`
∴ `tantheta/(sectheta - 1) = (tantheta + sectheta + 1)/(tantheta + sectheta - 1)`.
APPEARS IN
संबंधित प्रश्न
यदि tanθ = `3/4` तो secθ तथा cosθ का मान ज्ञात कीजिए।
यदि cotθ = `40/9` तो cosecθ तथा sinθ का मान ज्ञात कीजिए।
सिद्ध कीजिए।
cos2θ(1 + tan2θ) = 1
सिद्ध कीजिए।
sec2θ + cosec2θ = sec2θ × cosec2θ
सिद्ध कीजिए।
cot2θ - tan2θ = cosec2θ - sec2θ
सिद्ध कीजिए।
`(sintheta - costheta + 1)/(sintheta + costheta - 1) = 1/(sectheta - tantheta)`
यदि sinθ = `11/61`, तो सर्वसमिका का उपयोग करके cosθ का मान ज्ञात कीजिए।
यदि sin θ = cos θ हो, तो θ का मान कितना होगा?
θ का निरसन कीजिए:
x = r cosθ तथा y = r sinθ
सिद्ध कीजिए: cotθ + tanθ = cosecθ × secθ
हल:
बायाँ पक्ष = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
∴ बायाँ पक्ष = दायाँ पक्ष
∴ cotθ + tanθ = cosecθ × secθ