Advertisements
Advertisements
Question
सिद्ध कीजिए।
sin4θ - cos4θ = 1 - 2cos2θ
Solution
बायाँ पक्ष = sin4θ - cos4θ
= `(sin^2theta)^2 - (cos^2theta)^2`
= `(sin^2theta + cos^2theta)(sin^2theta - cos^2theta)` ..........`[a^2 - b^2 = (a + b)(a - b)]`
= `1(sin^2theta - cos^2theta)` ................`(sin^2theta + cos^2theta = 1)`
= `sin^2theta - cos^2theta`
= `1 - cos^2theta - cos^2theta` ........`[(∵ sin^2theta + cos^2theta = 1),(∴ sin^2theta = 1 - cos^2theta)]`
= `1 - 2cos^2theta`
= दायाँ पक्ष
∴ बायाँ पक्ष = दायाँ पक्ष
∴ sin4θ - cos4θ = 1 - 2cos2θ.
APPEARS IN
RELATED QUESTIONS
यदि sinθ = `7/25`, तो cosθ तथा tanθ का मान ज्ञात कीजिए।
सिद्ध कीजिए।
`sqrt((1 - sintheta)/(1 + sintheta)) = sectheta - tantheta`
सिद्ध कीजिए।
(secθ - cosθ)(cotθ + tanθ) = tanθ secθ
सिद्ध कीजिए।
secθ + tanθ = `cosθ/(1 - sinθ)`
सिद्ध कीजिए।
`tantheta/(sectheta - 1) = (tantheta + sectheta + 1)/(tantheta + sectheta - 1)`
सिद्ध कीजिए।
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2 = sinA cosA`
सिद्ध कीजिए।
cot2θ - tan2θ = cosec2θ - sec2θ
सिद्ध कीजिए।
`tantheta/(sectheta + 1) = (sectheta - 1)/tantheta`
यदि sinθ = `11/61`, तो सर्वसमिका का उपयोग करके cosθ का मान ज्ञात कीजिए।
यदि sin θ = `11/61` हो, तो त्रिकोणमितीय सर्वसमिका का उपयोग करके cos θ का मान ज्ञात करो।