हिंदी

यदि त्रिज्या 3 cm वाले एक वृत्त की दो स्पर्श रेखाएँ ऐसी खींची जाएँ कि उनके बीच का कोण 60° हो, तो प्रत्येक स्पर्श रेखा की लंबाई होगी ______। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि त्रिज्या 3 cm वाले एक वृत्त की दो स्पर्श रेखाएँ ऐसी खींची जाएँ कि उनके बीच का कोण 60° हो, तो प्रत्येक स्पर्श रेखा की लंबाई होगी ______।

विकल्प

  • `3/2 sqrt(3)` cm

  • 6 cm

  • 3 cm

  • `3sqrt(3)` cm

MCQ
रिक्त स्थान भरें

उत्तर

यदि त्रिज्या 3 cm वाले एक वृत्त की दो स्पर्श रेखाएँ ऐसी खींची जाएँ कि उनके बीच का कोण 60° हो, तो प्रत्येक स्पर्श रेखा की लंबाई होगी `underlinebb(3sqrt(3)  cm)`। 

स्पष्टीकरण: 

मान लीजिए कि P एक बाह्य बिंदु है जहाँ से स्पर्शरेखाओं का युग्म खींचा गया है जैसा कि नीचे दिए गए चित्र में दिखाया गया है:


OA और OP से जुड़ें

साथ ही, OP, ∠APC की एक समद्विभाजक रेखा है।

∠APO = ∠CPO = 30°

OA ⊥ AP

इसलिए, त्रिभुज OAP में, 

tan 30° = `"OA"/"AP"`

`1/sqrt3 = 3/"AP"`

AP = `3sqrt3` cm

shaalaa.com
एक बिंदु से एक वृत्त पर स्पर्श रेखाओं की संख्या
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: वृत्त - प्रश्नावली 9.1 [पृष्ठ १०५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 9 वृत्त
प्रश्नावली 9.1 | Q 9. | पृष्ठ १०५

संबंधित प्रश्न

यदि एक बिन्दु P से O केन्द्र वाले किसी वृत्त पर PA, PB स्पर्श रेखाएँ परस्पर 800 के कोण पर झुकी हों, तो ∠POA बराबर है:


दो संकेन्द्रीय वृत्तों की त्रिज्याएँ 5 cm तथा 3 cm हैं। बड़े वृत्त की उस जीवा की लम्बाई ज्ञात कीजिए जो छोटे वृत्त स्पर्श करती हो।


सिद्ध कीजिए कि किसी बाह्य बिंदु से वृत्त पर खींची गई दो स्पर्श रेखाओं के बीच का कोण, केंद्र से संपर्क बिंदुओं को मिलाने वाले रेखाखंडों द्वारा अंतरित कोण का संपूरक होता है।


सिद्ध कीजिए कि किसी वृत्त के परिगत समांतर चतुर्भुज समचतुर्भुज होता है।


सिद्ध कीजिए कि वृत्त के परिगत बनी चतुर्भुज की आमने साम्ने की भुजाएँ केन्द्र पर संपूरक कोण अंतरित करती हैं।


यदि किसी बिंदु P से त्रिज्या a और केंद्र O वाले वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण 90° है, तो OP = `asqrt(2)` होता है।


केंद्र O वाले एक वृत्त पर एक बाहरी बिंदु से दो स्पर्श रेखाएँ PQ और PR खींची गई हैंसिद्ध कीजिए कि QORP एक चक्रीय चतुर्भुज है।


यदि केंद्र O वाले एक वृत्त के एक बाहरी बिंदु B से दो स्पर्श रेखाएँ BC और BD इस प्रकार खींची जाएँ कि ∠DBC = 120° है, तो सिद्ध कीजिए कि BC + BD = BO है, अर्थात् BO = 2BC है। 


आकृति में, AB और CD असमान त्रिज्याओं वाले दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ हैं। सिद्ध कीजिए कि AB = CD हैं।


आकृति में, दोनों वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ AB और CD परस्पर बिंदु E पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि AB = CD है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×