Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि किसी वृत्त के परिगत समांतर चतुर्भुज समचतुर्भुज होता है।
उत्तर
मान लीजिए कि ABCD एक समचतुर्भुज है, जो केंद्र OOO वाले वृत्त को बाह्य रूप से स्पर्श करता है, जहाँ AB, BC, CD और DA वृत्त को क्रमशः बिंदु P, Q, R और S पर स्पर्श करते हैं। हमें ज्ञात है कि किसी बाहरी बिंदु से वृत्त पर खींची गई स्पर्श रेखाएँ समान लंबाई की होती हैं।
AP = AS .... (i) [A से स्पर्श रेखाएं]
BP = BQ …. (ii) [B से स्पर्शरेखा]
CR = CQ …. (iii) [C से स्पर्शरेखा]
DR = DS …. (iv) [D से स्पर्शरेखा]
∴ AB + CD = AP + BP + CR + DR
= AS + BQ + CQ + DS [From (i), (ii), (iii), (iv)]
= (AS + DS) + (BQ + CQ)
= AD + BC
इसलिए, (AB + CD) = (AD + BC)
2AB = 2AD
[∵ समांतर चतुर्भुज की सम्मुख भुजाएँ बराबर होती हैं]
⇒ AB = AD
∴ CD = AB = AD = BC
अत: ABCD एक समचतुर्भुज है।
APPEARS IN
संबंधित प्रश्न
एक बिन्दु Q से एक वृत्त की स्पर्श रेखा की लम्बाई 24 cm तथा Q की केन्द्र से दूरी 25 cm है। वृत्त की त्रिज्या है।
यदि एक बिन्दु P से O केन्द्र वाले किसी वृत्त पर PA, PB स्पर्श रेखाएँ परस्पर 800 के कोण पर झुकी हों, तो ∠POA बराबर है:
सिद्ध कीजिए कि किसी वृत्त के किसी व्यास के सिरों पर खींची गई स्पर्श रेखाएँ समांतर होती हैं।
दो संकेन्द्रीय वृत्तों की त्रिज्याएँ 5 cm तथा 3 cm हैं। बड़े वृत्त की उस जीवा की लम्बाई ज्ञात कीजिए जो छोटे वृत्त स्पर्श करती हो।
आकृति में XY तथा X'Y', O केन्द्र वाले किसी वृत्त पर दो समांतर स्पर्श रेखाएँ हैं और स्पर्श बिन्दु C पर स्पर्श रेखा AB, XY को A तथा X'Y' को B पर प्रतिच्छेद करती है। सिद्ध कीजिए कि ∠ AOB = 90°
सिद्ध कीजिए कि किसी बाह्य बिंदु से वृत्त पर खींची गई दो स्पर्श रेखाओं के बीच का कोण, केंद्र से संपर्क बिंदुओं को मिलाने वाले रेखाखंडों द्वारा अंतरित कोण का संपूरक होता है।
यदि त्रिज्या 3 cm वाले एक वृत्त की दो स्पर्श रेखाएँ ऐसी खींची जाएँ कि उनके बीच का कोण 60° हो, तो प्रत्येक स्पर्श रेखा की लंबाई होगी ______।
केंद्र O वाले एक वृत्त पर एक बाहरी बिंदु से दो स्पर्श रेखाएँ PQ और PR खींची गई हैंसिद्ध कीजिए कि QORP एक चक्रीय चतुर्भुज है।
सिद्ध कीजिए कि दो प्रतिच्छेदी रेखाओं को स्पर्श करने वाले वृत्त का केंद्र इन रेखाओं से बने कोण के समद्विभाजक पर स्थित होता है।
केंद्र O और त्रिज्या 5 cm वाले एक वृत्त के केंद्र से 13 cm की दूरी पर एक बिंदु A है। AP और AQ क्रमश: बिंदुओं P और Q पर वृत्त की स्पर्श रेखाएँ हैं। यदि लघु चाप PQ पर स्थित एक बिंदु R पर एक स्पर्श रेखा BC ऐसी खींची जाए, जो AP को B और AQ को C पर प्रतिच्छेद करे, तो ΔABC का परिमाप ज्ञात कीजिए।