Advertisements
Advertisements
प्रश्न
केंद्र O और त्रिज्या 5 cm वाले एक वृत्त के केंद्र से 13 cm की दूरी पर एक बिंदु A है। AP और AQ क्रमश: बिंदुओं P और Q पर वृत्त की स्पर्श रेखाएँ हैं। यदि लघु चाप PQ पर स्थित एक बिंदु R पर एक स्पर्श रेखा BC ऐसी खींची जाए, जो AP को B और AQ को C पर प्रतिच्छेद करे, तो ΔABC का परिमाप ज्ञात कीजिए।
उत्तर
OP ⊥ AP
∴ ∠OPA = 90° ...[वृत्त के किसी भी बिंदु पर स्पर्शरेखा संपर्क बिंदु से गुजरने वाली त्रिज्या के लंबवत होती है।]
∆OAP में,
OA2 = OP2 + PA2
⇒ 132 = 52 + PA2
⇒ PA = 12 cm
अब, ∆ABC का परिमाप = AB + BC + CA
= AB + BR + RC + CA
= (AB + BR) + (RC + CA)
= (AB + BP) + (CQ + CA) ...[∵ BR = BP, RC = CQ यानी, बाहरी बिंदु से वृत्त पर स्पर्शरेखाएं बराबर होती हैं।]
= AP + AQ
= 2AP ...[∵ AP = AQ]
= 2 × 12
= 24 cm
अत: ∆ABC का परिमाप = 24 cm.
APPEARS IN
संबंधित प्रश्न
एक बिन्दु Q से एक वृत्त की स्पर्श रेखा की लम्बाई 24 cm तथा Q की केन्द्र से दूरी 25 cm है। वृत्त की त्रिज्या है।
आकृति में, यदि TP, TQ केन्द्र O वाले किसी वृत्त पर दो स्पर्श रेखाएँ इस प्रकार हैं कि ∠POQ = 1100, तो ∠PTQ बराबर है ______.
एक वृत्त के परिगत एक चतुर्भुज ABCD खींचा गया है सिद्ध कीजिए AB + CD = AD + BC
सिद्ध कीजिए कि किसी बाह्य बिंदु से वृत्त पर खींची गई दो स्पर्श रेखाओं के बीच का कोण, केंद्र से संपर्क बिंदुओं को मिलाने वाले रेखाखंडों द्वारा अंतरित कोण का संपूरक होता है।
सिद्ध कीजिए कि किसी वृत्त के परिगत समांतर चतुर्भुज समचतुर्भुज होता है।
4 cm त्रिज्या वाले एक वृत्त के परिगत एक त्रिभुज ABC इस प्रकार खींचा गया है कि रेखाखंड BD और DC (जिनमें स्पर्श बिन्दु D द्वारा BC विभाजित है) की लम्बाईयाँ क्रमश: 8 cm और 6 cm हैं (देखिए आकृति)। भुजाएँ AB और AC ज्ञात कीजिए।
केंद्र O वाले वृत्त पर किसी बाहरी बिंदु P से खींची गई स्पर्श रेखा की लंबाई OP से सदैव छोटी होती है।
सिद्ध कीजिए कि दो प्रतिच्छेदी रेखाओं को स्पर्श करने वाले वृत्त का केंद्र इन रेखाओं से बने कोण के समद्विभाजक पर स्थित होता है।
आकृति में, AB और CD असमान त्रिज्याओं वाले दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ हैं। सिद्ध कीजिए कि AB = CD हैं।
आकृति में, दोनों वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ AB और CD परस्पर बिंदु E पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि AB = CD है।