Advertisements
Advertisements
प्रश्न
एक वृत्त के परिगत एक चतुर्भुज ABCD खींचा गया है सिद्ध कीजिए AB + CD = AD + BC
उत्तर
चूँकि किसी बाहरी बिंदु से वृत्त पर खींची गई स्पर्श रेखाएँ लंबाई में बराबर होती हैं,
AP = AS ….(1)
BP = BQ ….(2)
CR = CQ ….(3)
DR = DS ….(4)
समीकरण (1), (2), (3) और (4) को जोड़ने पर, हम प्राप्त करते हैं,
AP + BP + CR + DS = AS + BQ + CQ + DS
∴ (AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)
∴ AB + CD = AD + BC
∴ AB + CD = BC + DA …..(सिद्ध)
APPEARS IN
संबंधित प्रश्न
आकृति में, यदि TP, TQ केन्द्र O वाले किसी वृत्त पर दो स्पर्श रेखाएँ इस प्रकार हैं कि ∠POQ = 1100, तो ∠PTQ बराबर है ______.
सिद्ध कीजिए कि किसी बाह्य बिंदु से वृत्त पर खींची गई दो स्पर्श रेखाओं के बीच का कोण, केंद्र से संपर्क बिंदुओं को मिलाने वाले रेखाखंडों द्वारा अंतरित कोण का संपूरक होता है।
सिद्ध कीजिए कि किसी वृत्त के परिगत समांतर चतुर्भुज समचतुर्भुज होता है।
सिद्ध कीजिए कि वृत्त के परिगत बनी चतुर्भुज की आमने साम्ने की भुजाएँ केन्द्र पर संपूरक कोण अंतरित करती हैं।
केंद्र O वाले वृत्त पर किसी बाहरी बिंदु P से खींची गई स्पर्श रेखा की लंबाई OP से सदैव छोटी होती है।
वृत्त की दो स्पर्श रेखाओं के बीच का कोण 0° हो सकता है।
केंद्र O वाले एक वृत्त पर एक बाहरी बिंदु से दो स्पर्श रेखाएँ PQ और PR खींची गई हैंसिद्ध कीजिए कि QORP एक चक्रीय चतुर्भुज है।
यदि केंद्र O वाले एक वृत्त के एक बाहरी बिंदु B से दो स्पर्श रेखाएँ BC और BD इस प्रकार खींची जाएँ कि ∠DBC = 120° है, तो सिद्ध कीजिए कि BC + BD = BO है, अर्थात् BO = 2BC है।
आकृति में, AB और CD असमान त्रिज्याओं वाले दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ हैं। सिद्ध कीजिए कि AB = CD हैं।
केंद्र O और त्रिज्या 5 cm वाले एक वृत्त के केंद्र से 13 cm की दूरी पर एक बिंदु A है। AP और AQ क्रमश: बिंदुओं P और Q पर वृत्त की स्पर्श रेखाएँ हैं। यदि लघु चाप PQ पर स्थित एक बिंदु R पर एक स्पर्श रेखा BC ऐसी खींची जाए, जो AP को B और AQ को C पर प्रतिच्छेद करे, तो ΔABC का परिमाप ज्ञात कीजिए।