Advertisements
Advertisements
Find λ, if the vectors `veca=hati+3hatj+hatk,vecb=2hati−hatj−hatk and vecc=λhatj+3hatk` are coplanar.
Concept: Scalar Triple Product of Vectors
If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k
Concept: Distance of a Point from a Line
Find the co-ordinates of the foot of the perpendicular drawn from the point (0, 2, 3) to the line `(x + 3)/(5) = (y - 1)/(2) = (z + 4)/(3)`.
Concept: Equation of a Plane
A manufacturer produces two products A and B. Both the products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at Rs 7 profit and B at a profit of Rs 4. Find the production level per day for maximum profit graphically.
Concept: Graphical Method of Solving Linear Programming Problems
Find the derivative of the inverse of function y = 2x3 – 6x and calculate its value at x = −2
Concept: Derivatives of Inverse Functions
If y = cos(m cos–1x), then show that `(1 - x^2) ("d"^2y)/("d"x^2) - x("d"y)/("d"x) + "m"^2y` = 0
Concept: Higher Order Derivatives
The displacement of a particle at time t is given by s = 2t3 – 5t2 + 4t – 3. Find the velocity when 𝑡 = 2 sec
Concept: Derivatives as a Rate Measure
Find `intsqrtx/sqrt(a^3-x^3)dx`
Concept: Methods of Integration: Integration by Substitution
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
Concept: Methods of Integration: Integration Using Partial Fractions
If the population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 60 thousand in 40 years, what will be the population in another 20 years? `("Given" sqrt(3/2) = 1.2247)`
Concept: Application of Differential Equations
From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence find the mean of the distribution.
Concept: Random Variables and Its Probability Distributions
If θ is the measure of acute angle between the pair of lines given by `ax^2+2hxy+by^2=0,` then prove that `tantheta=|(2sqrt(h^2-ab))/(a+b)|,a+bne0`
Concept: Acute Angle Between the Lines
Find λ, if the vectors `veca=hati+3hatj+hatk,vecb=2hati−hatj−hatk and vecc=λhatj+3hatk` are coplanar.
Concept: Scalar Triple Product of Vectors
If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k
Concept: Distance of a Point from a Line
A manufacturer produces two products A and B. Both the products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at Rs 7 profit and B at a profit of Rs 4. Find the production level per day for maximum profit graphically.
Concept: Graphical Method of Solving Linear Programming Problems
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
Concept: Derivatives of Functions in Parametric Forms
If y = f(x) is a differentiable function of x such that inverse function x = f–1 (y) exists, then prove that x is a differentiable function of y and `dx/dy=1/((dy/dx)) " where " dy/dx≠0`
Concept: The Concept of Derivative > Derivative of Inverse Function
If `sqrt(1-x^2) + sqrt(1- y^2)` = a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`
Concept: Derivatives of Inverse Trigonometric Functions
Find `intsqrtx/sqrt(a^3-x^3)dx`
Concept: Methods of Integration: Integration by Substitution
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Concept: Evaluation of Definite Integrals by Substitution