हिंदी
Karnataka Board PUCPUC Science 2nd PUC Class 12

PUC Science 2nd PUC Class 12 - Karnataka Board PUC Question Bank Solutions for Mathematics

Advertisements
[object Object]
[object Object]
विषयों
मुख्य विषय
अध्याय
Advertisements
Advertisements
Mathematics
< prev  21 to 40 of 6436  next > 

What is the value of the determinant \[\begin{vmatrix}0 & 2 & 0 \\ 2 & 3 & 4 \\ 4 & 5 & 6\end{vmatrix} ?\]

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

Write the value of the determinant \[\begin{vmatrix}p & p + 1 \\ p - 1 & p\end{vmatrix}\]

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

Advertisements

Write the value of the determinant \[\begin{vmatrix}x + y & y + z & z + x \\ z & x & y \\ - 3 & - 3 & - 3\end{vmatrix}\]

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

Prove that the function 

\[f\left( x \right) = \begin{cases}\frac{x}{\left| x \right| + 2 x^2}, & x \neq 0 \\ k , & x = 0\end{cases}\]  remains discontinuous at x = 0, regardless the choice of k.
[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

If the determinant \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0 \text{ is }\] 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

If \[A_r = \begin{vmatrix}1 & r & 2^r \\ 2 & n & n^2 \\ n & \frac{n \left( n + 1 \right)}{2} & 2^{n + 1}\end{vmatrix}\] , then the value of \[\sum^n_{r = 1} A_r\] is

[0.04] Determinants
Chapter: [0.04] Determinants
Concept: undefined > undefined

For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the relationship between 'a' and 'b' so that the function 'f' defined by 

\[f\left( x \right) = \begin{cases}ax + 1, & \text{ if }  x \leq 3 \\ bx + 3, & \text{ if } x > 3\end{cases}\] is continuous at x = 3.

 

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\left| x \right| + 3 , & \text{ if } x \leq - 3 \\ - 2x , & \text { if }  - 3 < x < 3 \\ 6x + 2 , & \text{ if }  x > 3\end{cases}\]
[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}x^{10} - 1, & \text{ if }  x \leq 1 \\ x^2 , & \text{ if } x > 1\end{cases}\]

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}- 2 , & \text{ if }& x \leq - 1 \\ 2x , & \text{ if } & - 1 < x < 1 \\ 2 , & \text{ if }  & x \geq 1\end{cases}\]

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

In the following, determine the value of constant involved in the definition so that the given function is continuou: 

\[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x} , & x < \frac{\pi}{2} \\ 3 , & x = \frac{\pi}{2} \\ \frac{3 \tan 2x}{2x - \pi}, & x > \frac{\pi}{2}\end{cases}\]
[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

The function f (x) = tan x is discontinuous on the set

 

[0.05] Continuity and Differentiability
Chapter: [0.05] Continuity and Differentiability
Concept: undefined > undefined

Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.

[0.08] Applications of the Integrals
Chapter: [0.08] Applications of the Integrals
Concept: undefined > undefined

Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.

[0.08] Applications of the Integrals
Chapter: [0.08] Applications of the Integrals
Concept: undefined > undefined

Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 

[0.08] Applications of the Integrals
Chapter: [0.08] Applications of the Integrals
Concept: undefined > undefined

Find the area lying above the x-axis and under the parabola y = 4x − x2.

[0.08] Applications of the Integrals
Chapter: [0.08] Applications of the Integrals
Concept: undefined > undefined

Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.

[0.08] Applications of the Integrals
Chapter: [0.08] Applications of the Integrals
Concept: undefined > undefined

Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.

[0.08] Applications of the Integrals
Chapter: [0.08] Applications of the Integrals
Concept: undefined > undefined
< prev  21 to 40 of 6436  next > 
Advertisements
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×