Advertisements
Advertisements
प्रश्न
8 के प्रथम 15 गुणजों का योग ज्ञात कीजिए।
उत्तर
8 के गुणज हैं
8, 16, 24, 32…
ये एक समांतर श्रेणी में हैं, जिसका पहला पद 8 है और सार्व अंतर 8 है।
इसलिए, a = 8
d = 8
S15 =?
`S_n = n/2[2a+(n-1)d]`
= `15/2[2(8)+(15-1)8]`
= `15/2[16+14(8)]`
= `15/2(16+112)`
= `(15(128))/2`
= 15 × 64
= 960
इसलिए, 8 के पहले 15 गुणजों का योग 960 है।
APPEARS IN
संबंधित प्रश्न
नीचे दिए गए योगफल को ज्ञात कीजिए:
-5 + (-8) + (-11) + ... + (-230)
एक A.P. में, a = 5, d = 3 और an = 50 दिया है। n और Sn ज्ञात कीजिए।
ऐसे प्रथम 40 धन पूर्णांकों का योग ज्ञात कीजिए जो 6 से विभाज्य हैं।
यदि किसी AP का प्रथम पद –5 और सार्व अंतर 2 है, तो उसके प्रथम 6 पदों का योग ______ है।
ज्ञात कीजिए कि 55 एक AP : 7, 10, 13,... का पद है या नहीं। यदि हाँ, तो ज्ञात कीजिए कि यह कौन-सा पद है।
योग ज्ञात कीजिए :
`4 - 1/"n" + 4 - 2/"n" + 4 - 3/"n" + ... + "n पदों तक"`
उस AP के प्रथम 17 पदों का योग ज्ञात कीजिए, जिसके चौथे और 9 वें पद क्रमशः –15 और –30 हैं।
यदि किसी AP के प्रथम 6 पदों का योग 36 है तथा प्रथम 16 पदों का योग 256 है, तो उसके प्रथम 10 पदों का योग ज्ञात कीजिए।
AP: 8, 10, 12,..., 126 के अंतिम 10 पदों का योग ज्ञात कीजिए।
किसी AP के 11 वें पद का 18 वे पद से अनुपात 2 : 3 है। 5 वें पद का 21 वें पद से अनुपात ज्ञात कीजिए तथा साथ ही प्रथम पाँच पदों के योग का प्रथम 21 पदों के योग से अनुपात ज्ञात कीजिए।