मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Bulb Rated 60 W at 220 V is Connected Across a Household Supply of Alternating Voltage of 220 V. Calculate the Maximum Instantaneous Current - Physics

Advertisements
Advertisements

प्रश्न

A bulb rated 60 W at 220 V is connected across a household supply of alternating voltage of 220 V. Calculate the maximum instantaneous current through the filament.

बेरीज

उत्तर

Power of the bulb, P = 60 W
Voltage at the bulb, V = 220 V
RMS value of alternating voltage, Erms = 220 V
 P = V2R,
where R = resistance of the bulb
`therefore R = v^2/P = (220xx220)/60`
=806.67
Peak value of voltage (E_0) is given by,
`i_0 = E_0/R`
`⇒ i_0 = (311.08)/806.67 = 0.39 A `

shaalaa.com
Different Types of AC Circuits: AC Voltage Applied to a Capacitor
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Alternating Current - Exercises [पृष्ठ ३३०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 17 Alternating Current
Exercises | Q 3 | पृष्ठ ३३०

संबंधित प्रश्‍न

Show that the current leads the voltage in phase by π/2 in an AC circuit containing an ideal capacitor ?


Is energy produced when a transformer steps up the voltage?


A capacitor acts as an infinite resistance for ______.


An AC source producing emf ε = ε0 [cos (100 π s−1)t + cos (500 π s−1)t] is connected in series with a capacitor and a resistor. The steady-state current in the circuit is found to be i1 cos [(100 π s−1)t + φ1) + i2 cos [(500π s−1)t + ϕ2]. So,


An AC source is rated 220 V, 50 Hz. The average voltage is calculated in a time interval of 0.01 s. It


The dielectric strength of air is 3.0 × 106 V/m. A parallel-plate air-capacitor has area 20 cm2 and plate separation 0.10 mm. Find the maximum rms voltage of an AC source that can be safely connected to this capacitor.


A transformer has 50 turns in the primary and 100 in the secondary. If the primary is connected to a 220 V DC supply, what will be the voltage across the secondary?


A device Y is connected across an AC source of emf e = e0 sin ωt. The current through Y is given as i = i0 sin (ωt + π/2).

  1. Identify the device Y and write the expression for its reactance.
  2. Draw graphs showing a variation of emf and current with time over one cycle of AC for Y.
  3. How does the reactance of the device Y vary with the frequency of the AC? Show graphically.
  4. Draw the phasor diagram for device Y.

The frequency of A.C. mains in India is ______.

Of the following about capacitive reactance which is correct?

A capacitor has capacitance C and reactance X, if capacitance and frequency become double, then reactance will be ______.


When an AC voltage of 220 V is applied to the capacitor C ______.

  1. the maximum voltage between plates is 220 V.
  2. the current is in phase with the applied voltage.
  3. the charge on the plates is in phase with the applied voltage.
  4. power delivered to the capacitor is zero.

A device ‘X’ is connected to an a.c source. The variation of voltage, current and power in one complete cycle is shown in figure.

  1. Which curve shows power consumption over a full cycle?
  2. What is the average power consumption over a cycle?
  3. Identify the device ‘X’.


Explain why the reactance provided by a capacitor to an alternating current decreases with increasing frequency.


In the LCR circuit shown in figure, the ac driving voltage is v = vm sin ωt.

  1. Write down the equation of motion for q (t).
  2. At t = t0, the voltage source stops and R is short circuited. Now write down how much energy is stored in each of L and C.
  3. Describe subsequent motion of charges.


An a.c. source generating a voltage ε = ε0 sin ωt is connected to a capacitor of capacitance C. Find the expression for the current I flowing through it. Plot a graph of ε and I versus ωt to show that the current is ahead of the voltage by π/2.


A resistor of 50 Ω, a capacitor of `(25/pi)` µF and an inductor of `(4/pi)` H are connected in series across an ac source whose voltage (in volts) is given by V = 70 sin (100 πt). Calculate:

  1. the net reactance of the circuit
  2. the impedance of the circuit
  3. the effective value of current in the circuit.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×