मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Charge Q is Uniformly Distributed Over a Large Plastic Plate. the Electric Field at a Point P Close to the Centre of the Plate is 10 V M−1. - Physics

Advertisements
Advertisements

प्रश्न

A charge Q is uniformly distributed over a large plastic plate. The electric field at a point P close to the centre of the plate is 10 V m−1. If the plastic plate is replaced by a copper plate of the same geometrical dimensions and carrying the same charge Q, the electric field at the point P will become

पर्याय

  • zero

  • 5 V m−1

  • 10 V m−1

  •  20 V m−1

MCQ

उत्तर

10 V m-1
The electric field remains same for the plastic plate and the copper plate, as both are considered to be infinite plane sheets. So, it does not matter whether the plate is conducting or non-conducting.
The electric field due to both the plates,

`"E"  = σ /ε_0`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Gauss’s Law - MCQ [पृष्ठ १३९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 8 Gauss’s Law
MCQ | Q 1 | पृष्ठ १३९

संबंधित प्रश्‍न

Plot a graph showing the variation of resistivity of a conductor with temperature.


Show that there can be no net charge in a region in which the electric field is uniform at all points.


The electric field in a region is given by 

`vec"E"= 3/5"E"_0 vec"i" + 4/5 "E"_0 vec "i"  "with" " E"_0 = 2.0 xx 10^3 "N""C"^-1.` 

 Find the flux of this field through a rectangular surface of area 0⋅2 m2 parallel to the y-z plane.


Consider the following very rough model of a beryllium atom. The nucleus has four protons and four neutrons confined to a small volume of radius 10−15 m. The two 1 selectrons make a spherical charge cloud at an average distance of 1⋅3 ×10−11 m from the nucleus, whereas the two 2 s electrons make another spherical cloud at an average distance of 5⋅2 × 10−11 m from the nucleus. Find three electric fields at (a) a point just inside the 1 s cloud and (b) a point just inside the 2 s cloud.


Find the magnitude of the electric field at a point 4 cm away from a line charge of density 2 × 10-6 Cm-1.


One end of a 10 cm long silk thread is fixed to a large vertical surface of a charged non-conducting plate and the other end is fastened to a small ball of mass 10 g and a charge of 4.0× 10-6 C. In equilibrium, the thread makes an angle of 60° with the vertical (a) Find the tension in the string in equilibrium. (b) Suppose the ball is slightly pushed aside and released. Find the time period of the small oscillations.


Two conducting plates X and Y, each with a large surface area A (on one side), are placed parallel to each other, as shown in the  following figure . Plate X is given a charge Q,whereas the other is kept neutral. Find (a) the surface charge density at the inner surface of plate X (b) the electric field at a point to the left of the plates (c) the electric field at a point in between the plates and (d) the electric field at a point to the right of the plates.


Three identical metal plates with large surface areas are kept parallel to each other as shown in the following figure. The leftmost plate is given a charge Q, the rightmost a charge −2Q and the middle one is kept neutral. Find the charge appearing on the outer surface of the rightmost plate.


A block of mass containing a net positive charge q is placed on a smooth horizontal table which terminates in a vertical wall as shown in the figure. The distance of the block from the wall is d. A horizontal electric field E towards the right is switched on. Assuming elastic collisions (if any), find the time period of the resulting oscillatory motion. Is it a simple harmonic motion? 


Some equipotential surface is shown in the figure. What can you say about the magnitude and the direction of the electric field? 


Draw equipotential surfaces corresponding to a uniform electric field in the z-directions. 


Answer the following question.
Prove that the average energy density of the oscillating electric field is equal to that of the oscillating magnetic field.


If an electron has an initial velocity in a direction different from that of an electric field, the path of the electron is ______.

The force per unit charge is known as ______.


Pick out the statement which is incorrect


Two charged conducting spheres of radii a and b are connected to each other by a wire. Find the ratio of the electric fields at their surfaces.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×