Advertisements
Advertisements
प्रश्न
A fraction becomes `1/3` when 2 is subtracted from the numerator and it becomes `1/2` when 1 is subtracted from the denominator. Find the fraction.
उत्तर
Let's assume the fraction be `"x"/"y"`
First condition:
`(X-2)/y =1/3`
⇒ 3x -6 = y
⇒ 3X - Y= 6 ............. (1)
second condition:
`x/(y-1)= 1/2`
⇒ 2x = y- 1
⇒ 2x - y = -l ............ (2)
Using eliminated method:
Multiplying : (2) by -1 and then adding (1) and (2)
⇒ 3x- y = 6
⇒ - 2x + y = 1
⇒ x = 7
Now, from (1),
⇒ 3x - y =6
⇒ 3(7) - y = 6
⇒ 21 - y =6
⇒ y = 15
∴ x = 7, y = 15
APPEARS IN
संबंधित प्रश्न
Solve the following system of linear equations by using the method of elimination by equating the coefficients: 3x + 4y = 25 ; 5x – 6y = – 9
Solve the following pair of linear equation by the elimination method and the substitution method:
3x + 4y = 10 and 2x – 2y = 2
Form the pair of linear equation in the following problem, and find its solution (if they exist) by the elimination method:
A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs 27 for a book kept for seven days, while Susy paid Rs 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.
Out of 1900 km, Vishal travelled some distance by bus and some by aeroplane. The bus travels with an average speed of 60 km/hr and the average speed of the aeroplane is 700 km/hr. It takes 5 hours to complete the journey. Find the distance, Vishal travelled by bus.
Solve the following simultaneous equation.
x − 2y = −2 ; x + 2y = 10
A fraction becomes `(1)/(3)` when 2 is subtracted from the numerator and it becomes `(1)/(2)` when 1 is subtracted from the denominator. Find the fraction.
Complete the activity.
Complete the following table to draw the graph of 3x − 2y = 18
x | 0 | 4 | 2 | −1 |
y | − 9 | ______ | ______ | ______ |
(x, y) | (0, −9) | (______, _______) | (______, _______) | ______ |
The sum of the two-digit number and the number obtained by interchanging the digits is 132. The digit in the ten’s place is 2 more than the digit in the unit’s place. Complete the activity to find the original number.
Activity: Let the digit in the unit’s place be y and the digit in the ten’s place be x.
∴ The number = 10x + y
∴ The number obtained by interchanging the digits = `square`
∴ The sum of the number and the number obtained by interchanging the digits = 132
∴ 10x + y + 10y + x = `square`
∴ x + y = `square` .....(i)
By second condition,
Digit in the ten’s place = digit in the unit’s place + 2
∴ x – y = 2 ......(ii)
Solving equations (i) and (ii)
∴ x = `square`, y = `square`
Ans: The original number = `square`
Evaluate: (1004)3