मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Non-monochromatic Light is Used in an Experiment on Photoelectric Effect. the Stopping Potential - Physics

Advertisements
Advertisements

प्रश्न

A non-monochromatic light is used in an experiment on photoelectric effect. The stopping potential

पर्याय

  • is related to the mean wavelength

  •  is related to the longest wavelength

  • is related to the shortest wavelength

  • is not related to the wavelength

MCQ

उत्तर

is related to the shortest wavelength

For photoelectric effect to be observed, wavelength of the incident light `(λ)` should be less than the threshold wavelength `(λ_0)` of the metal .

Einstein's photoelectric equation :

`eV_0 = (hc)/(λ_0) - varphi`

Here, V0 = stopping potential

`λ_0` = threshold wavelength

h = Planck's constant

`varphi` = work-function of metal
It is clear from the above equation that stopping potential is related to the shortest wavelength (threshold wavelength).

shaalaa.com
Einstein’s Photoelectric Equation: Energy Quantum of Radiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Photoelectric Effect and Wave-Particle Duality - MCQ [पृष्ठ २६४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 20 Photoelectric Effect and Wave-Particle Duality
MCQ | Q 13 | पृष्ठ २६४

संबंधित प्रश्‍न

The work function for a certain metal is 4.2 eV. Will this metal give photoelectric emission for incident radiation of wavelength 330 nm?


Light of wavelength 488 nm is produced by an argon laser which is used in the photoelectric effect. When light from this spectral line is incident on the emitter, the stopping (cut-off) potential of photoelectrons is 0.38 V. Find the work function of the material from which the emitter is made.


In an accelerator experiment on high-energy collisions of electrons with positrons, a certain event is interpreted as annihilation of an electron-positron pair of total energy 10.2 BeV into two γ-rays of equal energy. What is the wavelength associated with each γ-ray? (1BeV = 109 eV)


Briefly explain the three observed features which can be explained by Einstein’s photoelectric equation.


Is p − E/c valid for electrons?


The frequency and intensity of a light source are doubled. Consider the following statements.

(A) The saturation photocurrent remains almost the same.
(B) The maximum kinetic energy of the photoelectrons is doubled.


The electric field at a point associated with a light wave is `E = (100  "Vm"^-1) sin [(3.0 xx 10^15 "s"^-1)t] sin [(6.0 xx 10^15 "s"^-1)t]`.If this light falls on a metal surface with a work function of 2.0 eV, what will be the maximum kinetic energy of the photoelectrons?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A small metal plate (work function φ) is kept at a distance d from a singly-ionised, fixed ion. A monochromatic light beam is incident on the metal plate and photoelectrons are emitted. Find the maximum wavelength of the light beam, so that some of the photoelectrons may go round the ion along a circle.


Use Einstein’s photoelectric equation to show how from this graph, 
(i) Threshold frequency, and (ii) Planck’s constant can be determined.


According to Einstein's photoelectric equation, the plot of the kinetic energy of the emitted photoelectrons from a metal versus the frequency of the incident radiation gives a straight line, whose slope ______.


Each photon has the same speed but different ______.


The minimum energy required to remove an electron is called ______.


The wavelength of a photon needed to remove a proton from a nucleus which is bound to the nucleus with 1 MeV energy is nearly ______.


There are materials which absorb photons of shorter wavelength and emit photons of longer wavelength. Can there be stable substances which absorb photons of larger wavelength and emit light of shorter wavelength.


Radiation of frequency 1015 Hz is incident on three photosensitive surfaces A, B and C. Following observations are recorded:

Surface A: no photoemission occurs

Surface B: photoemission occurs but the photoelectrons have zero kinetic energy.

Surface C: photo emission occurs and photoelectrons have some kinetic energy.
Using Einstein’s photo-electric equation, explain the three observations.


A photon of wavelength 663 nm is incident on a metal surface. The work function of the metal is 1.50 eV. The maximum kinetic energy of the emitted photoelectrons is ______.


The photon emitted during the de-excitation from the first excited level to the ground state of a hydrogen atom is used to irradiate a photocathode in which the stopping potential is 5 V. Calculate the work function of the cathode used.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×