Advertisements
Advertisements
प्रश्न
A parallel-plate capacitor is charged to a potential difference V by a dc source. The capacitor is then disconnected from the source. If the distance between the plates is doubled, state with reason how the following change:
(i) electric field between the plates
(ii) capacitance, and
(iii) energy stored in the capacitor
उत्तर
(i)
Q = CV
`Q = ((epsi_0A)/d) (Ed)`
`Q = epsi_0AE`
`therefore E =Q/(epsi_0A)`
Therefore, the electric field between the parallel plates depends only on the charge and the plate area. It does not depend on the distance between the plates.
Since the charge as well as the area of the plates does not change, the electric field between the plates also does not change.
(ii)
Let the initial capacitance be C and the final capacitance be C'.
Accordingly,
`C = (epsiA)/d`
`C' = (epsi_0A)/(2d)`
`C/C' = 2`
`C' \ C/2`
Hence, the capacitance of the capacitor gets halved when the distance between the plates is doubled.
(iii)
Energy of a capacitor, U `=1/2 (Q_2)/C`
Since Q remains the same but the capacitance decreases,
`U' = 1/2 (Q^2)/((C/2))`
`U/U' = 1/2`
U' = 2U
The energy stored in the capacitor gets doubled when the distance between the plates is doubled.
APPEARS IN
संबंधित प्रश्न
Explain briefly the process of charging a parallel plate capacitor when it is connected across a d.c. battery
In a parallel plate capacitor with air between the plates, each plate has an area of 6 × 10−3 m2 and the distance between the plates is 3 mm. Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor?
The plates of a parallel plate capacitor have an area of 90 cm2 each and are separated by 2.5 mm. The capacitor is charged by connecting it to a 400 V supply.
(a) How much electrostatic energy is stored by the capacitor?
(b) View this energy as stored in the electrostatic field between the plates, and obtain the energy per unit volume u. Hence arrive at a relation between u and the magnitude of electric field E between the plates.
A slab of material of dielectric constant K has the same area as that of the plates of a parallel plate capacitor but has the thickness d/2, where d is the separation between the plates. Find out the expression for its capacitance when the slab is inserted between the plates of the capacitor.
Define the capacitance of a capacitor and its SI unit.
A parallel-plate capacitor has plate area 20 cm2, plate separation 1.0 mm and a dielectric slab of dielectric constant 5.0 filling up the space between the plates. This capacitor is joined to a battery of emf 6.0 V through a 100 kΩ resistor. Find the energy of the capacitor 8.9 μs after the connections are made.
Answer the following question.
Describe briefly the process of transferring the charge between the two plates of a parallel plate capacitor when connected to a battery. Derive an expression for the energy stored in a capacitor.
For a one dimensional electric field, the correct relation of E and potential V is _________.
Two charges – q each are separated by distance 2d. A third charge + q is kept at mid point O. Find potential energy of + q as a function of small distance x from O due to – q charges. Sketch P.E. v/s x and convince yourself that the charge at O is in an unstable equilibrium.
A parallel plate capacitor filled with a medium of dielectric constant 10, is connected across a battery and is charged. The dielectric slab is replaced by another slab of dielectric constant 15. Then the energy of capacitor will ______.