मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

A parallel plate capacitor made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s−1. - Physics

Advertisements
Advertisements

प्रश्न

A parallel plate capacitor (Figure) made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s−1.

  1. What is the rms value of the conduction current?
  2. Is the conduction current equal to the displacement current?
  3. Determine the amplitude of B at a point 3.0 cm from the axis between the plates.

संख्यात्मक

उत्तर

Radius of each circular plate, R = 6.0 cm = 0.06 m

Capacitance of a parallel plate capacitor, C = 100 pF = 100 × 10−12 F

Supply voltage, V = 230 V

Angular frequency, ω = 300 rad s−1

(a) The rms value of conduction current, I = `"V"/"X"_"C"`

Where,

XC = Capacitive reactance

= `1/(ω"C")`

∴ I = V × ωC

= 230 × 300 × 100 × 10−12

= 6.9 × 10−6 A

= 6.9 μA

Hence, the rms value of the conduction current is 6.9 μA.

(b) Yes, conduction current is equal to displacement current.

(c) Magnetic field is given as:

B = `(μ_0"r")/(2pi"R"^2)"I"_0`

Where,

μ0 = Free space permeability = 4π × 10−7 N A−2

I0 = Maximum value of current = `sqrt2"I"`

r = Distance between the plates from the axis = 3.0 cm = 0.03 m

∴ B = `(4pi xx 10^-7 xx 0.03 xx sqrt2 xx 6.9 xx 10^-6)/(2pi xx (0.06)^2)`

= 1.63 × 10−11 T

Hence, the magnetic field at that point is 1.63 × 10−11 T.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Electromagnetic Waves - Exercise [पृष्ठ २८६]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
पाठ 8 Electromagnetic Waves
Exercise | Q 8.2 | पृष्ठ २८६
एनसीईआरटी Physics [English] Class 12
पाठ 8 Electromagnetic Waves
Exercise | Q 2 | पृष्ठ २८६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Figure shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The charging current is constant and equal to 0.15 A.

  1. Calculate the capacitance and the rate of charge of the potential difference between the plates.
  2. Obtain the displacement current across the plates.
  3. Is Kirchhoff’s first rule (junction rule) valid at each plate of the capacitor? Explain.


A capacitor has been charged by a dc source. What are the magnitude of conduction and displacement current, when it is fully charged?


A parallel-plate capacitor of plate-area A and plate separation d is joined to a battery of emf ε and internal resistance R at t = 0. Consider a plane surface of area A/2, parallel to the plates and situated symmetrically between them. Find the displacement current through this surface as a function of time.


Without the concept of displacement current it is not possible to correctly apply Ampere’s law on a path parallel to the plates of parallel plate capacitor having capacitance C in ______.


The displacement of a particle from its mean position is given by x = 4 sin (10πt + 1.5π) cos (10πt + 1.5π). The motion of the particle is


Displacement current goes through the gap between the plantes of a capacitors. When the charge of the capacitor:-


According to Maxwell's hypothesis, a changing electric field gives rise to ______.


A capacitor of capacitance ‘C’, is connected across an ac source of voltage V, given by V = V0 sinωt The displacement current between the plates of the capacitor would then be given by ______.


A capacitor of capacitance ‘C’, is connected across an ac source of voltage V, given by V = V0 sinωt The displacement current between the plates of the capacitor would then be given by ______


A capacitor of capacitance ‘C’, is connected across an ac source of voltage V, given by

V = V0sinωt 

The displacement current between the plates of the capacitor would then be given by:


An electromagnetic wave travelling along z-axis is given as: E = E0 cos (kz – ωt.). Choose the correct options from the following;

  1. The associated magnetic field is given as `B = 1/c hatk xx E = 1/ω (hatk xx E)`.
  2. The electromagnetic field can be written in terms of the associated magnetic field as `E = c(B xx hatk)`.
  3. `hatk.E = 0, hatk.B` = 0.
  4. `hatk xx E = 0, hatk xx B` = 0.

A variable frequency a.c source is connected to a capacitor. How will the displacement current change with decrease in frequency?


Show that the magnetic field B at a point in between the plates of a parallel-plate capacitor during charging is `(ε_0mu_r)/2 (dE)/(dt)` (symbols having usual meaning).


Sea water at frequency ν = 4 × 108 Hz has permittivity ε ≈ 80 εo, permeability µ ≈ µo and resistivity ρ = 0.25 Ω–m. Imagine a parallel plate capacitor immersed in seawater and driven by an alternating voltage source V(t) = Vo sin (2πνt). What fraction of the conduction current density is the displacement current density?


A long straight cable of length `l` is placed symmetrically along z-axis and has radius a(<< l). The cable consists of a thin wire and a co-axial conducting tube. An alternating current I(t) = I0 sin (2πνt) flows down the central thin wire and returns along the co-axial conducting tube. The induced electric field at a distance s from the wire inside the cable is E(s,t) = µ0I0ν cos (2πνt) In `(s/a)hatk`.

  1. Calculate the displacement current density inside the cable.
  2. Integrate the displacement current density across the cross-section of the cable to find the total displacement current Id.
  3. Compare the conduction current I0 with the displacement current `I_0^d`.

A parallel plate capacitor is charged to 100 × 10-6 C. Due to radiations, falling from a radiating source, the plate loses charge at the rate of 2 × 10-7 Cs-1. The magnitude of displacement current is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×