मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A String of Linear Mass Density 0⋅5 G Cm−1 and a Total Length 30 Cm is Tied to a Fixed Wall at One End and to a Frictionless Ring at the Other End (Figure 15-e4). the Ring - Physics

Advertisements
Advertisements

प्रश्न

A string of linear mass density 0⋅5 g cm−1 and a total length 30 cm is tied to a fixed wall at one end and to a frictionless ring at the other end (See figure). The ring can move on a vertical rod. A wave pulse is produced on the string which moves towards the ring at a speed of 20 cm s−1. The pulse is symmetric about its maximum which is located at a distance of 20 cm from the end joined to the ring. (a) Assuming that the wave is reflected from the ends without loss of energy, find the time taken by the string to region its shape. (b) The shape of the string changes periodically with time. Find this time period. (c) What is the tension in the string?

बेरीज

उत्तर

Given,
Linear mass density of the string = 0.5 gcm−1
Total length of the string = 30 cm
Speed of the wave pulse = 20 cms−1

The crest reflects the crest here because the wave is travelling from a denser medium to a rarer medium.
Phase  change = 0
(a) 

Total  distance,   S = 20 + 20 = 40  cm

Wave  speed,   \nu = 20  m/s
Time taken to regain shape:
\[Time = \frac{S}{\nu} = \frac{40}{20} = 2  s\]
(b) The wave regain its shape after covering a period distance
\[= 2 \times 30 = 60\] cm 
\[\therefore   \text{ Time  period } = \frac{60}{20} = 3  s\]
(c) Frequency,
\[n = \frac{1}{\text{ Time  period}} = \frac{1}{3}   s^{- 1}\] 

We know:
\[n = \frac{1}{2l}\sqrt{\left( \frac{T}{m} \right)}\]
Here, T is the tension in the string.
Now,

\[m = \text{ Mass  per  unit  length } \] 

\[         = 0 . 5  gm/cm\] 

\[ \Rightarrow \frac{1}{3} = \frac{1}{\left( 2 \times 30 \right)}  \sqrt{\left( \frac{T}{0 . 5} \right)}\] 

\[ \Rightarrow   T = 400 \times 0 . 5\] 

\[               = 200  \text{ dyn }\] 

\[               = 2 \times  {10}^{- 3}   N\]

shaalaa.com
Speed of Wave Motion
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Wave Motion and Waves on a String - Exercise [पृष्ठ ३२४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 15 Wave Motion and Waves on a String
Exercise | Q 16 | पृष्ठ ३२४

संबंधित प्रश्‍न

Both the strings, shown in figure, are made of same material and have same cross section. The pulleys are light. The wave speed of a transverse wave in the string AB is
\[\nu_1\]  and in CD it is \[\nu_2\]. Then \[\nu_1 / \nu_2\]


Two waves represented by \[y = a\sin\left( \omega t - kx \right)\] and \[y = a\cos\left( \omega t - kx \right)\] \[y = a\cos\left( \omega t - kx \right)\] are superposed. The resultant wave will have an amplitude 


The fundamental frequency of a string is proportional to


A wave pulse passing on a string with a speed of 40 cm s−1 in the negative x-direction has its maximum at x = 0 at t = 0. Where will this maximum be located at t = 5 s?


Choose the correct option:

A standing wave is produced on a string clamped at one end and free at the other. The length of the string ______.


The speed of sound in a medium depends on


A cylindrical metal tube has a length of 50 cm and is open at both ends. Find the frequencies between 1000 Hz and 2000 Hz at which the air column in the tube can resonate. Speed of sound in air is 340 m s−1.


In a resonance column experiment, a tuning fork of frequency 400 Hz is used. The first resonance is observed when the air column has a length of 20.0 cm and the second resonance is observed when the air column has a length of 62.0 cm. (a) Find the speed of sound in air. (b) How much distance above the open end does the pressure node form?


A copper rod of length 1.0 m is clamped at its middle point. Find the frequencies between 20 Hz and 20,000 Hz at which standing longitudinal waves can be set up in the rod. The speed of sound in copper is 3.8 km s−1.


Find the greatest length of an organ pipe open at both ends that will have its fundamental frequency in the normal hearing range (20 − 20,000 Hz). Speed of sound in air = 340 m s−1.


A piston is fitted in a cylindrical tube of small cross section with the other end of the tube open. The tube resonates with a tuning fork of frequency 512 Hz. The piston is gradually pulled out of the tube and it is found that a second resonance occurs when the piston is pulled out through a distance of 32.0 cm. Calculate the speed of sound in the air of the tube.


A bat emitting an ultrasonic wave of frequency 4.5 × 104 Hz flies at a speed of 6 m s−1between two parallel walls. Find the fractional heard by the bat and the beat frequencies heard by the bat and the beat frequency between the two. The speed of sound is 330 m s−1.


A bullet passes past a person at a speed of 220 m s−1. Find the fractional change in the frequency of the whistling sound heard by the person as the bullet crosses the person. Speed of sound in air = 330 m s−1.


A traffic policeman sounds a whistle to stop a car-driver approaching towards him. The car-driver does not stop and takes the plea in court that because of the Doppler shift, the frequency of the whistle reaching him might have gone beyond the audible limit of 25 kHz and he did not hear it. Experiments showed that the whistle emits a sound with frequency closed to 16 kHz. Assuming that the claim of the driver is true, how fast was he driving the car? Take the speed of sound in air to be 330 m s−1. Is this speed practical with today's technology?


A car moving at 108 km h−1 finds another car in front it going in the same direction at 72 km h−1. The first car sounds a horn that has a dominant frequency of 800 Hz. What will be the apparent frequency heard by the driver in the front car? Speed of sound in air = 330 m s−1.


The speed of a transverse wave in an elastic string is v0. If the tension in the string is reduced to half, then the speed of the wave is given by:


Change in temperature of the medium changes ______.


Two tuning forks having frequencies 320 Hz and 340 Hz are sounded together to produce sound waves. The velocity of sound in air is 340 m/s. Find the difference in wavelength of these waves. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×