मराठी

A Swimming Pool is 18 M Long and 8 M Wide. Its Deep and Shallow Ends Are 2 M and 1.2 M Respectively. Find the Capacity of the Pool, Assuming that the Bottom of the Pool Slopes Uniformly - Mathematics

Advertisements
Advertisements

प्रश्न

A swimming pool is 18 m long and 8 m wide. Its deep and shallow ends are 2 m and 1.2 m respectively. Find the capacity of the pool, assuming that the bottom of the pool slopes uniformly. 

बेरीज

उत्तर

Length of pool = 18 m

Breadth of pool = 8 m

Height of one side = 2m

Height on second side = 1.2 m

∴ Volume of pool = 18 x 8 x `(( 2 + 1 . 2 ))/( 2 )` m3

= `( 18 xx 8 xx 3.2 )/( 2 )`

= 230.4 m

shaalaa.com
Cross Section of Solid Shapes
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Solids [Surface Area and Volume of 3-D Solids] - Exercise 21 (B) [पृष्ठ २७३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 21 Solids [Surface Area and Volume of 3-D Solids]
Exercise 21 (B) | Q 9 | पृष्ठ २७३

संबंधित प्रश्‍न

A swimming pool is 40 m long and 15 m wide. Its shallow and deep ends are 1.5 m and 3 m deep respectively. If the bottom of the pool slopes uniformly, find the amount of water in liters required to fill the pool.


The cross-section of a tunnel perpendicular to its length is a trapezium ABCD as shown in the following figure; also given that:

AM = BN; AB = 7 m; CD = 5 m. The height of the tunnel is 2.4 m. The tunnel is 40 m long. Calculate:

(i) The cost of painting the internal surface of the tunnel (excluding the floor) at the rate of Rs. 5 per m2 (sq. meter).

(ii) The cost of paving the floor at the rate of Rs. 18 per m2.


A rectangular field is 112 m long and 62 m broad. A cubical tank of edge 6 m is dug at each of the four corners of the field and the earth so removed is evenly spread on the remaining field. Find the rise in level.  


The cross section of a piece of metal 2 m in length is shown. Calculate the area of cross section.


The cross section of a piece of metal 2 m in length
is shown. Calculate the volume of the piece of metal.


The given figure is a cross -section of a victory stand used in sports. All measurements are in centimetres. Assume all angles in the figure are right angles. If the width of the stand is 60 cm, find The space it occupies in cm3.


The figure shows the cross section of 0.2 m a concrete wall to be constructed. It is 0.2 m wide at the top, 2.0 m wide at the bottom and its height is 4.0 m, and its length is 40 m. Calculate the cross sectional area


The figure shows the cross section of 0.2 m a concrete wall to be constructed. It is 0.2 m wide at the top, 2.0 m wide at the bottom and its height is 4.0 m, and its length is 40 m. If the whole wall is to be painted, find the cost of painting it at 2.50 per sq m.


The cross section of a tunnel perpendicular to its length is a trapezium ABCD as shown in the figure. AM = BN; AB = 4.4 m, CD = 3 m The height of a tunnel is 2.4 m. The tunnel is 5.4 m long. Calculate the cost of painting the internal surface of the tunnel (excluding the floor) at the rate of Rs. 5 per m2.


ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls.
Find the total surface area (including roofing) of the shed.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×