Advertisements
Advertisements
प्रश्न
The given figure is a cross -section of a victory stand used in sports. All measurements are in centimetres. Assume all angles in the figure are right angles. If the width of the stand is 60 cm, find The space it occupies in cm3.
उत्तर
To find the volume, first find the area of the figure.
To find the area, we divide the figure into 3 different rectangles.
Rectangle 1 (left):
length = 50cm
width = 40cm
Area = length x width
= 50 x 40
= 2000cm2
Rectangle 2 (middle):
length = (60 + 30)cm = 90cm
width = 40cm
Area = length x width
= 90 x 40
= 3600cm2
Rectangle 3 (right):
length = 60cm
width = 40cm
Area = length x width
= 60 x 40
= 2400cm2
Total area
= 2000 + 3600 + 2400
= 8000cm2
Volume = Total area x length
= 8000 x 60
= 4,80,000cm3
∴ The space occupied is 4,80,000cm3.
APPEARS IN
संबंधित प्रश्न
The cross-section of a tunnel perpendicular to its length is a trapezium ABCD as shown in the following figure; also given that:
AM = BN; AB = 7 m; CD = 5 m. The height of the tunnel is 2.4 m. The tunnel is 40 m long. Calculate:
(i) The cost of painting the internal surface of the tunnel (excluding the floor) at the rate of Rs. 5 per m2 (sq. meter).
(ii) The cost of paving the floor at the rate of Rs. 18 per m2.
A school auditorium is 40 m long, 30 m broad and 12 m high. If each student requires 1.2 m2 of the floor area; find the maximum number of students that can be accommodated in this auditorium. Also, find the volume of air available in the auditorium, for each student.
Find the length of 22 kg copper wire of diameter 0.8 cm, if the weight of 1 cm3 copper is 4.2 g.
Find the length of a solid cylinder of diameter 4 cm when recast into a hollow cylinder of outer diameter 10 cm, thickness 0.25 cm and length 21 cm? Give your answer correct to two decimal places.
The cross section of a piece of metal 2 m in length is shown. Calculate the area of cross section.
The given figure is a cross -section of a victory stand used in sports. All measurements are in centimetres. Assume all angles in the figure are right angles. If the width of the stand is 60 cm, find The total surface area in m2.
The cross section of a tunnel perpendicular to its length is a trapezium ABCD as shown in the figure. AM = BN; AB = 4.4 m, CD = 3 m The height of a tunnel is 2.4 m. The tunnel is 5.4 m long. Calculate the cost of painting the internal surface of the tunnel (excluding the floor) at the rate of Rs. 5 per m2.
ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls.
If the cost of asbestos sheet roofing is Rs. 20 per m2, find the cost of roofing.
The cross section of a swimming pool is a trapezium whose shallow and deep ends are 1 m and 3 m respectively. If the length of the pool is 50 m and its width is 1.5 m, calculate the volume of water it holds.
The cross section of a canal is a trapezium with the base length of 3 m and the top length of 5 m. It is 2 m deep and 400 m long. Calculate the volume of water it holds.