मराठी

A triangle ABC is inscribed in a circle. The bisectors of angles BAC, ABC and ACB meet the circumcircle of the triangle at points P, Q and R respectively. Prove that : ∠QPR=90∘-12∠BAC - Mathematics

Advertisements
Advertisements

प्रश्न

A triangle ABC is inscribed in a circle. The bisectors of angles BAC, ABC and ACB meet the circumcircle of the triangle at points P, Q and R respectively. Prove that : 

`∠QPR = 90^circ - 1/2 ∠BAC`

बेरीज

उत्तर


Join PQ and PR

Adding (i) and (ii)

We get

∠ABC + ∠ACB = 2(∠APR + ∠APQ) = 2∠QPR

`=>` 180° – ∠BAC = 2∠QPR

`=> ∠QPR = 90^circ - 1/2 ∠BAC`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Circles - Exercise 17 (A) [पृष्ठ २६१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 17 Circles
Exercise 17 (A) | Q 40.3 | पृष्ठ २६१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×