मराठी

In the Figure, Ab = Ac = Cd, ∠Adc = 38°. Calculate: (I) ∠ Abc, (Ii) ∠ Bec. - Mathematics

Advertisements
Advertisements

प्रश्न

In the figure, AB = AC = CD, ∠ADC = 38°. Calculate: (i) ∠ ABC, (ii) ∠ BEC.

बेरीज

उत्तर

(i) ∵ AC = CD
∴ ∠ CAD = ∠ ADC = 38°
Now, in Δ ACD,
∠ ACD + ∠ CAD + ∠ ADC = 180°
⇒ ∠ ACD + 38° + 38° = 180°
⇒ ∠ ACD = 104°
Now, 
⇒ ∠ ACB + ∠ ACD = 180°
⇒ ∠ ACB + 104° = 180°
⇒ ∠ ACB = 76°

Again, AB = AC
∴ ∠ ABC = ∠ ACB = 76°

(ii) In Δ ABC,
∠ BAC + ∠ ABC + ∠ ACB = 180°
⇒ ∠ BAC + 76° + 76° = 180°
⇒ ∠ BAC = 28°
Now, ∠ BEC = ∠ BAC = 28°     ....(Angles subtended by the same chord)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Circles - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 15 Circles
Exercise 2 | Q 50

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A triangle ABC is inscribed in a circle. The bisectors of angles BAC, ABC and ACB meet the circumcircle of the triangle at points P, Q and R respectively. Prove that:

  1. ∠ABC = 2∠APQ,
  2. ∠ACB = 2∠APR,
  3. `∠QPR = 90^circ - 1/2 ∠BAC`.


In the given figure, AOC is a diameter and AC is parallel to ED. If ∠CBE = 64°, calculate ∠DEC.


The given figure shows a circle with centre O and ∠ABP = 42°.


Calculate the measure of:

  1. ∠PQB
  2. ∠QPB + ∠PBQ

In the given figure, AB = AD = DC = PB and ∠DBC = x°. Determine, in terms of x :

  1. ∠ABD,
  2. ∠APB.

Hence or otherwise, prove that AP is parallel to DB.


In cyclic quadrilateral ABCD; AD = BC, ∠BAC = 30° and ∠CBD = 70°; find:

  1. ∠BCD
  2. ∠BCA
  3. ∠ABC
  4. ∠ADC

In the figure, given below, CP bisects angle ACB. Show that DP bisects angle ADB.


A triangle ABC is inscribed in a circle. The bisectors of angles BAC, ABC and ACB meet the circumcircle of the triangle at points P, Q and R respectively. Prove that : 

`∠QPR = 90^circ - 1/2 ∠BAC`


If I is the incentre of triangle ABC and AI when produced meets the cicrumcircle of triangle ABC in points D . if ∠BAC = 66° and ∠ABC = 80°. Calculate : ∠IBC


In the given below the figure, AB is parallel to DC, ∠BCD = 80° and ∠BAC = 25°, Find 
(i) ∠CAD, (ii) ∠CBD, (iii) ∠ADC.


In the given figure (drawn not to scale) chords AD and BC intersect at P, where AB = 9 cm, PB = 3 cm and PD = 2 cm.

  1. Prove that ΔAPB ~ ΔCPD.
  2. Find the length of CD. 
  3. Find area ΔAPB : area ΔCPD.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×