मराठी

In the Figure Given Alongside, Ad is the Diameter of the Circle. If ∠ Bcd = 130°, Calculate: (I) ∠ Dab (Ii) ∠ Adb. - Mathematics

Advertisements
Advertisements

प्रश्न

In the figure given alongside, AD is the diameter of the circle. If ∠ BCD = 130°, Calculate: (i) ∠ DAB (ii) ∠ ADB.

बेरीज

उत्तर

(i) Since ABCD is a cyclic quadrilateral.
∴ Its Opposite angles are supplementary.
∴ ∠ DAB + ∠ BCD = 180°
⇒ ∠ DAB = 180° - ∠ BCD
⇒ ∠ DAB = 180° - 130°
⇒ ∠ DAB = 50°

(ii) Since, angle in the semicircle is a right angle.
∴ In Δ ABD, ∠ABD = 90°
Since, the sum of the angle of a triangle is 180°
∴ ∠ABD + ∠ADB + ∠ DAB = 180°
∴ 90° + ∠ADB + 50° = 180°
∠ADB = 180° - (90° + 50°)
∠ADB = 180° - 140°
∠ADB = 40°

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Circles - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 15 Circles
Exercise 2 | Q 51

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

ABCD is a cyclic quadrilateral in which AB is parallel to DC and AB is a diameter of the circle. Given ∠BED = 65°; calculate :

  1. ∠DAB,
  2. ∠BDC.


Prove that the perimeter of a right triangle is equal to the sum of the diameter of its incircle and twice the diameter of its circumcircle.


The following figure shows a circle with PR as its diameter. If PQ = 7 cm and QR = 3RS = 6 cm, find the perimeter of the cyclic quadrilateral PQRS.


In the given figure, AB is the diameter of a circle with centre O.

If chord AC = chord AD, prove that:

  1. arc BC = arc DB
  2. AB is bisector of ∠CAD.

Further, if the length of arc AC is twice the length of arc BC, find:

  1. ∠BAC
  2. ∠ABC


AB is a line segment and M is its mid-point. Three semi-circles are drawn with AM, MB and AB as diameters on the same side of the line AB. A circle with radius r unit is drawn so that it touches all the three semi-circles. Show that : AB = 6 × r

In the given figure, RS is a diameter of the circle. NM is parallel to RS and ∠MRS = 29°. Calculate : ∠NRM


In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°. 

Calculate : ∠ADC 

Also, show that the ΔAOD is an equilateral triangle.


In the given figure, O is the centre of the circle and ∠PBA = 45°. Calculate the value of ∠PQB.


In the figure, ∠DBC = 58°. BD is diameter of the circle.

Calculate:

  1. ∠BDC
  2. ∠BEC
  3. ∠BAC


In the given figure AC is the diameter of the circle with centre O. CD is parallel to BE.

∠AOB = 80° and ∠ACE = 20°.

Calculate

  1. ∠BEC
  2. ∠BCD
  3. ∠CED


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×